Vapor Pressure of Ionic Liquids with a Common Tetrabutylammonium Cation and Three Different Anions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermal Analysis and Vapor Pressure Calculation Procedure
2.3. Infrared Spectroscopy
3. Results and Discussion
3.1. Decomposition and Melting Points by Thermal Analysis
3.2. Vapor Pressure Determination
3.3. Calculation of the Vaporization Enthalpy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lei, Z.; Chen, B.; Koo, Y.M.; MacFarlane, D.R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef]
- Izgorodina, E.I.; Seeger, Z.L.; Scarborough, D.A.L.; Tan, S.Y.S. Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. Chem. Rev. 2017, 117, 6696–6754. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, P.; Budhalakoti, B.; Kumar, A.; Singh, K.; Kamboj, R.K.; Bhatrola, K. Exploring the Impact of Ionic Liquids on Pyrazole Derivatives Synthesis: A Critical Review. ChemistrySelect 2024, 9, e202401925. [Google Scholar] [CrossRef]
- Dhiman, D.; Alhammadi, M.; Kim, H.; Umapathi, R.; Suk Huh, Y.; Venkatesu, P. Designer Solvents for Pharmaceutics: Role of Ionic Liquids/Deep Eutectic Solvents in Pharmaceutical Formulations. Adv. Therap. 2024, 7, 2400090. [Google Scholar] [CrossRef]
- El-Shaheny, R.; El Hamd, M.A.; El-Enany, N.; Alshehri, S.; El-Maghrabey, M. Insights on the utility of ionic liquids for greener recovery of gold and silver from water, wastes, and ores. J. Mol. Liq. 2024, 414, 126034. [Google Scholar] [CrossRef]
- Tuncay, G.; Yuksekdag, A.; Kose Mutlu, B.; Koyuncu, I. A review of greener approaches for rare earth elements recovery from mineral wastes. Environ. Pollut. 2024, 357, 124379. [Google Scholar] [CrossRef]
- Amiril, S.A.S.; Rahim, E.A.; Syahrullail, S. A review on ionic liquids as sustainable lubricants in manufacturing and engineering: Recent research, performance, and applications. J. Clean. Prod. 2017, 168, 1571–1589. [Google Scholar] [CrossRef]
- Waheed, S.; Ahmed, A.; Abid, M.; Mufti, R.A.; Ferreira, F.; Bashir, M.N.; Shah, A.U.R.; Jafry, A.T.; Zulkifti, N.W.; Fattah, I.M.R. Ionic liquids as lubricants: An overview of recent developments. J. Mol. Struc. 2024, 1301, 137307. [Google Scholar] [CrossRef]
- Appetecchi, G.B.; Montanino, M.; Passerini, S. Ionic liquid-based electrolytes for high-energy, safer lithium batteries. In Ionic Liquids: Science and Applications; Visser, A.E., Bridges, N.J., Rogers, R.D., Eds.; ACS Symposium Series; ACS Publications: Washington, DC, USA, 2012; Volume 1117, pp. 67–128. [Google Scholar]
- Paulechka, Y.U.; Zaitsau, D.H.; Kabo, G.J.; Strechan, A.A. Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide. Thermochim. Acta 2005, 439, 158–160. [Google Scholar] [CrossRef]
- Zaitsau, D.H.; Kabo, G.J.; Strechan, A.A.; Paulechka, Y.U.; Tschersich, A.; Verevkin, S.P.; Heintz, A. Experimental Vapor Pressures of 1-Alkyl-3-methylimidazoliumBis(trifluoromethylsulfonyl)imides and a Correlation Scheme for Estimation of Vaporization Enthalpies of Ionic Liquids. J. Phys. Chem. A 2006, 110, 7303–7306. [Google Scholar] [CrossRef]
- Rocha, M.A.A.; Lima, C.F.R.A.C.; Gomes, L.R.; Schröder, B.; Coutinho, J.A.P.; Marrucho, I.M.; Esperança, J.M.; Rebelo, L.P.N.; Shimizu, K.; Lopes, J.N.; et al. High-Accuracy Vapor Pressure Data of the Extended [CnC1im][Ntf2] Ionic Liquid Series: Trend Changes and Structural Shifts. J. Phys. Chem. B 2011, 115, 10919–10926. [Google Scholar] [CrossRef]
- Rocha, M.A.A.; Coutinho, J.A.P.; Santos, L.M.N.B.F. Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains. J. Chem. Phys. 2014, 141, 134502. [Google Scholar] [CrossRef]
- Ravula, S.; Larm, N.E.; Mottaleb, M.A.; Heitz, M.P.; Baker, G.A. Vapour pressure mapping of ionic liquids and low-volatility fluids using graded isothermal thermogravimetric analysis. ChemEngineering 2019, 3, 42. [Google Scholar] [CrossRef]
- Paolone, A.; Haddad, B.; Villemin, D.; Boumediene, M.; Fetouhi, B.; Assenine, M.A. Thermal decomposition, low temperature phase transitions and vapor pressure of less common ionic liquids based on the bis(trifuoromethanesulfonyl)imide anion. Materials 2022, 15, 5255. [Google Scholar] [CrossRef]
- Ferdeghini, C.; Guazzelli, L.; Pomelli, C.S.; Ciccioli, A.; Brunetti, B.; Mezzetta, A.; Vecchio Ciprioti, S. Synthesis, thermal behavior and kinetic study of N-morpholinium dicationic ionic liquids by thermogravimetry. J. Mol. Liq. 2021, 332, 115662. [Google Scholar] [CrossRef]
- Dunaev, A.M.; Motalov, V.B.; Kudin, L.S.; Zhabanov, Y.A.; Aleksandriiskii, V.V.; Govorov, D. Evaporation thermodynamics of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. J. Mol. Liq. 2023, 380, 121626. [Google Scholar] [CrossRef]
- Bi, W.; Liu, S.; Rong, X.; Ma, G.; Luo, J. Vapor Pressure and Enthalpy of Vaporization of Guanidinium Methanesulfonate as a Phase Change Material for Thermal Energy Storage. Materials 2024, 7, 2582. [Google Scholar] [CrossRef]
- Wu, J.; Wei, N.; Chen, X.; Zhang, R.; Chen, X.; Tong, J. Determination of vapor pressure, evaporation enthalpy and polarity of imidazolium-based ionic liquids. J. Therm. Anal. Calorim. 2024, 149, 5511–5522. [Google Scholar] [CrossRef]
- Wu, J.; Wei, N.; Xuan, Y.; Chen, X.; Tong, J. Thermodynamic Properties of Ether-Functionalized Ionic Liquids [COC4mim][Tau]. J. Chem. Eng. Data 2024, 69, 1805–1813. [Google Scholar] [CrossRef]
- Barulli, L.; Mezzetta, A.; Brunetti, B.; Guazzelli, L.; Vecchio Ciprioti, S.; Ciccioli, A. Evaporation thermodynamics of the tetraoctylphosphonium bis(trifluoromethansulfonyl)imide ([P8888]NTf2) and tetraoctylphosphonium nonafluorobutane-1-sulfonate ([P8888]NFBS) ionic liquids. J. Mol. Liq. 2021, 333, 115892. [Google Scholar] [CrossRef]
- Cimini, A.; Palumbo, O.; Simonetti, E.; De Francesco, M.; Appetecchi, G.B.; Fantini, S.; Lin, R.; Falgayrat, A.; Paolone, A. Decomposition temperatures and vapour pressures of selected ionic liquids for electrochemical applications. J. Therm. Anal. Calorim. 2020, 142, 1791–1797. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Zohra Sari-Ali, B.F.; Mokbel, I.; Mutelet, F.; Khelidj, O.; Jose, J.; Bahadur, I.; Mohammad, F.; Negadi, L. Isothermal vapor–liquid equilibria of binary mixtures containing (methanol, or propan-1-ol, or water, or acetonitrile) and 1-ethyl-3-methylimidazolium thiocynate ionic liquid: Measurements and modeling. J. Mol. Liq. 2024, 399, 124433. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, K.; Fang, L.; Wang, S.; Liu, X.; He, M. Vapor-liquid equilibrium measurements of ionic liquid [DEME][TFSI] with different hydrofluorocarbon refrigerants R152a, R32, and R143a. Fluid Phase Equilibria 2024, 579, 114022. [Google Scholar] [CrossRef]
- Di Muzio, S.; Trequattrini, F.; Palumbo, O.; Roy, P.; Brubach, J.B.; Paolone, A. An Eutectic Mixture in the Tetrabutylammonium Bromide-Octanol System: Macroscopic and Microscopic Points of View. ChemPhysChem 2024, 5, e202400219. [Google Scholar] [CrossRef]
- Di Muzio, S.; Ramondo, F.; Palumbo, O.; Trequattrini, F.; Roy, P.; Brubach, J.B.; Paolone, A. Conformational geometry matters: The case of the eutectic systems of tetrabutylammonium triflate with fumaric or maleic acid. Molecules 2024, 29, 5093. [Google Scholar] [CrossRef]
- Bracchini, G.A.; Di Muzio, S.; Trequattrini, F.; Palumbo, O.; Paolone, A.; Ramondo, F. Fatty acid and alcohol based low melting mixtures: The role of intermolecular interactions by DFT and infrared spectroscopy. J. Mol. Liq. 2025, 417, 126590. [Google Scholar] [CrossRef]
- Santos, L.M.N.B.F.; Lobo Ferreira, A.I.M.C.; Štejfa, V.; Rodrigues, A.S.M.C.; Rocha, M.A.A.; Torres, M.C.; Tavares, F.M.S.; Carpinteiro, F.S. Development of the Knudsen effusion methodology for vapour pressuremeasurements of low volatile liquids and solids based on a quartz crystalmicrobalance. J. Chem. Thermodyn. 2018, 126, 171–186. [Google Scholar] [CrossRef]
- Ahrenberg, M.; Beck, M.; Neise, C.; Keßler, O.; Kragl, U.; Verevkinc, S.P.; Schick, K. Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry. Phys. Chem. Chem. Phys. 2016, 18, 21381-90. [Google Scholar] [CrossRef]
- Liu, S.; Wei, R.; Ma, G.; Li, A.; Conrade, O.; Luo, J. The cohesive properties and pyrolysis mechanism ofan aprotic ionic liquid tetrabutylammonium bis(trifluoromethanesulfonyl)imide. Soft Matter 2023, 19, 6458–6467. [Google Scholar] [CrossRef]
- Vishweswariah, K.; Madikere Raghunatha Reddy, A.K.; Zaghib, K. Beyond Organic Electrolytes: An Analysis of Ionic Liquids for Advanced Lithium Rechargeable Batteries. Batteries 2024, 10, 436. [Google Scholar] [CrossRef]
- Tang, X.; Lv, S.; Jiang, K.; Zhou, G.; Liu, X. Recent development of ionic liquid-based electrolytes in lithium-ion batteries. J. Power Sources 2022, 542, 231792. [Google Scholar] [CrossRef]
- Rana, S.; Thakur, R.C.; Dosanjh, H.S. Ionic liquids as battery electrolytes for lithium ion batteries: Recent advances and future prospects. Solid State Ion. 2023, 400, 116340. [Google Scholar] [CrossRef]
- Chary, M.V.; Keerthysri, N.C.; Vupallapati, S.V.N.; Lingaiah, N.; Kantevari, S. Tetrabutylammoniumbromide (TBAB) in Isopropanol: An Efficient, Novel, Neutral and Recyclable Catalytic System for the Synthesis of 2,4,5-Trisubstitutedimidazoles. Catal. Commun. 2008, 9, 2013. [Google Scholar] [CrossRef]
- Cammenga, H.K.; Schulze, F.W.; Theuerl, W. Vapor pressure and evaporation coefficient of glycerol. J. Chem. Eng. Data 1977, 22, 131–134. [Google Scholar] [CrossRef]
- Zaitsau, D.H.; Yermalayeu, A.V.; Emel’yanenko, V.N.; Verevkin, S.P. Thermodynamics of imidazolium-based ionic liquids containing the trifluoromethanesulfonate anion. Chem. Eng. Technol. 2018, 41, 1604–1612. [Google Scholar] [CrossRef]
- Miranda, C.F.P.; Lobo Ferreira, A.I.M.C.; Santos, L.M.N.B.F. C2 methylation effect on the cohesive interaction of trifluoromethanesulfonate alkylimidazolium ionic liquid. J. Mol. Liq. 2022, 353, 118772. [Google Scholar] [CrossRef]
- Silva, R.M.A.; Lobo Ferreira, A.I.M.C.; Santos, L.M.N.B.F. On the Thermodynamic Properties and Nanostructuration of the 1-Alkyl-3-Methylimidazolium Trifluoromethanesulfonate Series. Available online: https://ssrn.com/abstract=5211652 (accessed on 24 May 2025).
- Brunetti, B.; Ciccioli, A.; Gigli, G.; Lapi, A.; Simonetti, G.; Toto, E.; Vecchio Ciprioti, S. Evaporation/Decomposition Behavior of 1-Butyl-3-Methylimidazolium Chloride (BMImCL) Investigated through Effusion and Thermal Analysis Techniques. Thermo 2023, 3, 248–259. [Google Scholar] [CrossRef]
- Kurzin, A.V.; Evdokimov, A.N.; Antipina, V.B.; Pavlova, O.S. Vapor pressures for the acetonitrile + tetrabutylammonium bromide, water + tetrabutylammonium bromide, and acetonitrile + water + tetrabutylammonium bromide systems. J. Chem. Eng. Data 2009, 54, 1049–1051. [Google Scholar] [CrossRef]
- Zaitsau, D.H.; Siewert, R.; Pimerzin, A.A.; Bülow, M.; Held, C.; Loor, M.; Schulz, S.; Verevkin, S.P. From volatility to solubility: Thermodynamics of imidazolium-based ionic liquids containing chloride and bromide anions. J. Mol. Liq. 2021, 323, 114998. [Google Scholar] [CrossRef]
- Chinnadurai, D.; Li, Y.; Zhang, C.; Yang, G.; Lieu, W.Y.; Kumar, S.; Xing, Z.; Liu, W.; She, Z.W. Chloride-Free Electrolyte Based on Tetrabutylammonium Triflate Additive for Extended Anodic Stability in Magnesium Batteries. Nano Lett. 2023, 23, 11233–11242. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Xiao, J.; Ng, Z.S.; Zhang, X.; Chen, W.; Wang, T.; Hu, J.; Su, Y.; Zhang, Y. Dual-Interface Regulation for High-Performance Magnesium–Sulfur Batteries. Adv. Funct. Mater. 2025, 2506192. [Google Scholar] [CrossRef]
- Ruiz de Larramendi, I.; Lozano, I.; Enterría, M.; Cid, R.; Echeverría, M.; Rodríguez Peña, S.; Carrasco, J.; Manzano, H.; Beobide, G.; Landa-Medrano, I.; et al. Unveiling the Role of Tetrabutylammonium and Cesium Bulky Cations in Enhancing Na-O2 Battery Performance. Adv. Energy Mater. 2022, 12, 2102834. [Google Scholar] [CrossRef]
- Poli, I.; Eslava, S.; Cameron, P. Tetrabutylammonium cations for moisture-resistant and semitransparent perovskite solar cells. J. Mater. Chem. A 2017, 5, 22325. [Google Scholar] [CrossRef]
- Jin, S.; Wei, Y.; Rong, B.; Fang, Y.; Zhao, Y.; Guo, Q.; Huang, Y.; Fan, L.; Wu, J. Improving perovskite solar cells photovoltaic performance using tetrabutylammonium salt as additive. J. Power Sourc. 2020, 450, 227623. [Google Scholar] [CrossRef]
- Bonsa, A.-M.; Paschek, D.; Zaitsau, D.H.; Emel’yanenko, V.N.; Verevkin, S.P.; Ludwig, R. The Relation between Vaporization Enthalpies and Viscosities: Eyring’s Theory Applied to Selected Ionic Liquids. ChemPhysChem 2017, 18, 1242–1246. [Google Scholar] [CrossRef]
- Červinka, C.; Klajmon, M.; Štejfa, V. Cohesive Properties of Ionic Liquids Calculated from First Principles. J. Chem. Theory Comput. 2019, 15, 5563–5578. [Google Scholar] [CrossRef]
- Jiřištĕ, L.; Klajmon, M. Predicting the Thermodynamics of Ionic Liquids: What to Expect from PC-SAFT and COSMO-RS? J. Phys. Chem. B 2022, 126, 3717–3736. [Google Scholar] [CrossRef]
Name | Source | Acronym | Purity (Mass %) | CAS No. |
---|---|---|---|---|
tetrabutylammonium trifluoromethanesulfonate | Sigma Aldrich | TBA-TFO | 99.0 | 35895-70-6 |
tetrabutylammonium bis(trifluoromethanesulfonyl)imide | Sigma Aldrich | TBA-NTF2 | 99.0 | 210230-40-3 |
tetrabutylammonium bromide | TCI | TBA-Br | 99.0 | 1643-19-2 |
Sample | Tm (°C) | Td (°C) |
---|---|---|
TBA-Br | 120 | 195 |
TBA-TFO | 115 | 316 |
TBA-NTF2 | 93 | 364 |
Temperature/°C | Vapor Pressure/Pa |
---|---|
130 | (6.6 ± 0.1) |
140 | (3.5 ± 0.1) × 10 |
150 | (1.15 ± 0.05) × 102 |
160 | (3.1 ± 0.1) × 102 |
170 | (7.1 ± 0.1) × 102 |
Temperature/°C | Vapor Pressure/Pa |
---|---|
200 | (3.02 ± 0.06) × 10−1 |
220 | (6.9 ± 0.1) × 10−1 |
240 | (3.1 ± 0.1) |
260 | (1.65 ± 0.06) × 10 |
280 | (9.3 ± 0.4) × 10 |
300 | (4.6 ± 0.2) × 102 |
Temperature/°C | Vapor Pressure/Pa |
---|---|
240 | (1.20 ± 0.05) |
260 | (2.82 ± 0.06) |
280 | (9.4 ± 0.2) |
300 | (2.79 ± 0.08) × 10 |
320 | (1.28 ± 0.05) × 102 |
Sample | Vaporization Enthalpy/kJ mol−1 |
---|---|
TBA-Br | 172 ± 11 |
TBA-TFO | 170 ± 12 |
TBA-NTF2 | 146 ± 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabrizi, I.; Di Muzio, S.; Ramondo, F.; Trequattrini, F.; Palumbo, O.; Paolone, A. Vapor Pressure of Ionic Liquids with a Common Tetrabutylammonium Cation and Three Different Anions. Appl. Sci. 2025, 15, 6040. https://doi.org/10.3390/app15116040
Fabrizi I, Di Muzio S, Ramondo F, Trequattrini F, Palumbo O, Paolone A. Vapor Pressure of Ionic Liquids with a Common Tetrabutylammonium Cation and Three Different Anions. Applied Sciences. 2025; 15(11):6040. https://doi.org/10.3390/app15116040
Chicago/Turabian StyleFabrizi, Ivan, Simone Di Muzio, Fabio Ramondo, Francesco Trequattrini, Oriele Palumbo, and Annalisa Paolone. 2025. "Vapor Pressure of Ionic Liquids with a Common Tetrabutylammonium Cation and Three Different Anions" Applied Sciences 15, no. 11: 6040. https://doi.org/10.3390/app15116040
APA StyleFabrizi, I., Di Muzio, S., Ramondo, F., Trequattrini, F., Palumbo, O., & Paolone, A. (2025). Vapor Pressure of Ionic Liquids with a Common Tetrabutylammonium Cation and Three Different Anions. Applied Sciences, 15(11), 6040. https://doi.org/10.3390/app15116040