Experimental and Modeling Study of Core-Scale Three-Dimensional Rough Fracture Acidic Wastewater Reaction with Carbonate Rocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.1.1. Carbonate Rock
2.1.2. Phosphogypsum Leachate
2.2. Physical Experiment
2.2.1. Static Dissolution Experiments
2.2.2. Dynamic Dissolution Experiments
2.3. Calculation Method of Dissolution Evaluation Parameters
2.4. Numerical Simulation
2.4.1. Control Equations
2.4.2. Initial and Boundary Conditions
3. Analysis and Discussion
3.1. Characteristics of Surface Micro-Morphological Changes
3.2. Characteristics of Changes in Dissolution Amount per Unit Area and Dissolution Rate
3.3. Characterization of Fracture Aperture Changes
3.4. Characterization of Changes in Phosphogypsum Leachate
3.4.1. Characterization of pH Changes
3.4.2. Characterization of TDS Changes
3.4.3. Characteristics of Changes in Ca2+, SO42−, F−, and Total P Concentrations
3.5. Discussion
3.5.1. Relationship Between Conductivity, pH, and Chemical Dissolution Rate
3.5.2. Relationship Between pH and Chemical Dissolution Rate
3.5.3. Influence of the Presence or Absence of Hydrodynamic Conditions on Dissolution Effects
3.6. Numerical Simulation Results
4. Conclusions
- (1)
- It is known from physical experiments that phosphogypsum leachate–carbonate rock interactions exhibit rapid initial dissolution followed by progressive stabilization. In this study, lower leachate pH correlated with accelerated dissolution rates, a phenomenon directly evidenced by microscale morphological alterations on carbonate rock surfaces. EDS analysis confirmed that dissolution-induced secondary minerals accumulate extensively on rock specimen surfaces. Fracture aperture minimally affects static dissolution patterns but critically influences dynamic systems—smaller apertures exhibit limited enlargement and delayed pH stabilization with higher final pH.
- (2)
- Comparative analysis of different physical experiments shows that the hydrodynamic conditions dramatically intensify dissolution. Dynamic systems exhibit 10–15 times greater dissolution amount per unit area than static conditions. Notably, the evolution trends of key geochemical parameters (pH, Ca2+, SO42−, F−, and total P concentrations) displayed opposing patterns between dynamic and static systems. Static dissolution experiments revealed a linear positive correlation between chemical dissolution rates of carbonate rocks and solution conductivity. Concurrently, phosphogypsum leachate pH demonstrated an exponential negative correlation with rock dissolution amount per unit area, while exhibiting a power-law negative correlation with chemical dissolution rates.
- (3)
- Numerical simulation results demonstrated that preferential flow through fracture channels led to higher reactant concentrations near fractures due to incomplete reactions, whereas lower concentrations occurred in sub-fracture regions. As the fracture aperture increased, the concentration disparity between these regions became more pronounced, with higher concentration of reactants at the outlet.
- (1)
- The experimental analysis focused exclusively on limestone, excluding other carbonate variants (e.g., dolomite, magnesite). Future investigations should incorporate diverse carbonate lithologies with varying mineralogical compositions to comprehensively characterize dissolution mechanisms.
- (2)
- The numerical model simplified environmental variables, omitting temperature gradients, CO2 partial pressure, and chemo-hydro-mechanical couplings. Enhanced simulations integrating these multi-physics interactions are required to improve predictive accuracy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alotaibi, A.M.; Aljabbab, A.A.; Alajmi, M.S.; Qadrouh, A.N.; Farahat, M.; Abdel Khalek, M.A.; Baioumy, H.; Alzahrani, R.Y.; Mana, T.H.; Almutairi, R.S. Utilization of Phosphogypsum as Sustainable Adsorbent for Removal of Crystal Violet Dye from Wastewater: Kinetics, Thermodynamics, and Applications in Textile Effluent Treatment. Sustainability 2025, 17, 3320. [Google Scholar] [CrossRef]
- Samira, M.; Moncef, G. Impact Assessment of Phosphogypsum Leachate on Groundwater of Sfax-Agareb (Southeast of Tunisia): Using Geochemical and Isotopic Investigation. J. Chem. 2018, 2018, 2721752. [Google Scholar]
- Maria, P.; Georgios, G. Examination of the environmental behavior of phosphogypsum with the application of lab-scale experiment. J. Environ. Sci. health Part A Toxic/Hazard. Subst. Environ. Eng. 2023, 58, 706–714. [Google Scholar]
- Zhao, M.; Li, X.; Yu, J.X.; Li, F.; Guo, L.; Song, G.; Xiao, C.; Zhou, F.; Chi, R.; Feng, G. Highly efficient recovery of phosphate and fluoride from phosphogypsum leachate: Selective precipitation and adsorption. J. Environ. Manag. 2024, 367, 122064. [Google Scholar] [CrossRef] [PubMed]
- Ke, H.; Zheng, S.N.; Zhang, P.Z.; Xiao, B.; Lan, J.W.; Zhang, S.; Hu, J. Leaching behavior and release mechanism of pollutants from different depths in a phosphogypsum stockpile. Waste Manag. 2024, 189, 230–242. [Google Scholar] [CrossRef]
- Pérez-Moreno, S.M.; Romero, C.; Guerrero, J.L.; Barba-Lobo, A.; Gázquez, M.J.; Bolivar, J.P. Evolution of the waste generated along the cleaning process of phosphogypsum leachates. J. Environ. Chem. Eng. 2023, 11, 111485. [Google Scholar] [CrossRef]
- Sharapov, R. Indicators for karst processes evaluation. In Proceedings of the 14th International Multidisciplinary Scientific Geoconference (SGEM), Albena, Bulgaria, 17–26 June 2014; pp. 519–525. [Google Scholar]
- Ren, J.; Li, J.; Xi, B.; Yang, Y.; Lu, H.; Shi, J. Groundwater Pollution Prevention and Control in China: Current Status and Countermeasures. Strateg. Study CAE 2022, 24, 161–168. [Google Scholar] [CrossRef]
- Fleury, P.; Pistre, S.; Bakalowicz, A. Coastal karst aquifers and submarine springs: What future for their water resources? C. R. Geosci. 2023, 355, 487–500. [Google Scholar] [CrossRef]
- Zhou, N.; Lu, S.; Cai, Y.; Zhao, S. Site Investigation and Remediation of Sulfate-Contaminated Groundwater Using Integrated Hydraulic Capture Techniques. Water 2022, 14, 2989. [Google Scholar] [CrossRef]
- Chabaux, F.; Viville, D.; Lucas, Y.; Ackerer, J.; Ranchoux, C.; Bosia, C.; Pierret, M.C.; Labasque, T.; Aquilina, L.; Wyns, R.; et al. Geochemical tracing and modeling of surface and deep water-rock interactions in elementary granitic watersheds (Strengbach and Ringelbach CZOs, France). Acta Geochim. 2017, 36, 363–366. [Google Scholar] [CrossRef]
- Berrone, S.; Canuto, C.; Pieraccini, S.; Scialo, S. Uncertainty Quantification in Discrete Fracture Network Models: Stochastic Geometry. Water Resour. Res. 2018, 54, 1338–1352. [Google Scholar] [CrossRef]
- Tomassi, A.; de Franco, R.; Trippetta, F. High-resolution synthetic seismic modelling: Elucidating facies heterogeneity in carbonate ramp systems. Pet. Geosci. 2025, 31, petgeo2024-047. [Google Scholar] [CrossRef]
- Ford, D. Characteristics of dissolutional cave systems in carbonate rocks. In Paleokarst; Springer: New York, NY, USA, 1988; pp. 25–57. [Google Scholar]
- Dreybrodt, W. Processes in Karst Systems (Series in Physical Environment); Springer: Heidelberg, Germany, 1988; pp. 140–182. [Google Scholar]
- Dreybrodt, W.; Buhmann, D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chem. Geol. 1991, 90, 107–122. [Google Scholar] [CrossRef]
- Shi, M.; Min, X.; Tian, C.; Hao, T.; Zhu, S.; Ge, Y.; Wang, Q.; Yan, X.; Lin, Z. Mechanisms of Pb(II) coprecipitation with natrojarosite and its behavior during acid dissolution. J. Environ. Sci. 2022, 122, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Renard, F.; Royne, A.; Putnis, C.V. Timescales of interface-coupled dissolution-precipitation reactions on carbonates. Geosci. Front. 2019, 10, 17–27. [Google Scholar] [CrossRef]
- Lin, W.; Yang, Z.; Li, X.; Wang, J.; He, Y.; Wu, G.; Xiong, S.; Wei, Y. A method to select representative rock samples for digital core modeling. Fractals-Complex Geom. Patterns Scaling Nat. Soc. 2017, 25, 1740013. [Google Scholar] [CrossRef]
- Siddiqui, S.; Funk, J.J.; Al-Tahini, A.M. Use of X-Ray CT To Measure Pore Volume Compressibility of Shaybah Carbonates. Spe Reserv. Eval. Eng. 2010, 13, 155–164. [Google Scholar] [CrossRef]
- Elkady, Y.; Kovscek, A.R. Multiscale study of CO2 impact on fluid transport and carbonate dissolution in Utica and Eagle Ford shale. J. Pet. Sci. Eng. 2020, 195, 107867. [Google Scholar] [CrossRef]
- Dufresne, W.J.; Rufledt, C.J.; Marshall, C.P. Raman spectroscopy of the eight natural carbonate minerals of calcite structure. J. Raman Spectrosc. 2018, 49, 1999–2007. [Google Scholar] [CrossRef]
- Su, W.; Heinrich, C.A.; Pettke, T.; Zhang, X.; Hu, R.; Xia, B. Sediment-Hosted Gold Deposits in Guizhou, China: Products of Wall-Rock Sulfidation by Deep Crustal Fluids. Econ. Geol. 2009, 104, 73–93. [Google Scholar] [CrossRef]
- Kwak, H.; Hursan, G.; Shao, W.; Chen, S.H.; Balliet, R.; Eid, M.; Guergueb, N. Predicting Carbonate Rock Properties Using NMR Data and Generalized Interpolation-Based Techniques. Petrophysics 2016, 57, 351–368. [Google Scholar]
- Müller-Huber, E.; Schön, J.; Börner, F. Pore space characterization in carbonate rocks—Approach to combine nuclear magnetic resonance and elastic wave velocity measurements. J. Appl. Geophys. 2016, 127, 68–81. [Google Scholar] [CrossRef]
- Fredd, C.N.; Fogler, H.S. The kinetics of calcite dissolution in acetic acid solutions. Chem. Eng. Sci. 1998, 53, 3863–3874. [Google Scholar] [CrossRef]
- Li, C.; Wu, F.; Zhao, Y.; Wang, F.; Cao, Y. Fractal and Hydro-Chemical Characteristics of Microscopic Karst Morphology Based on Dissolution Experiments. Mod. Tunn. Technol. 2018, 55, 110–120. [Google Scholar]
- Larson, E.B.; Emmons, R.V. Dissolution of Carbonate Rocks in a Laboratory Setting: Rates and Textures. Minerals 2021, 11, 605. [Google Scholar] [CrossRef]
- Yue, G.; Zhu, X.; Wang, G.; Ma, F. Mineral reaction kinetics during aciding of the Gaoyuzhuang carbonate geothermal reservoir in the xiong’an new area, northern China. Water 2022, 14, 3160. [Google Scholar] [CrossRef]
- Alkattan, M.; Oelkers, E.H.; Dandurand, J.-L.; Schott, J. An experimental study of calcite and limestone dissolution rates as a function of pH from −1 to 3 and temperature from 25 to 80 °C. Chem. Geol. 1998, 151, 199–214. [Google Scholar] [CrossRef]
- Eisenlohr, L.; Meteva, K.; Gabrovšek, F.; Dreybrodt, W. The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H2O–CO2 solutions. Geochim. Cosmochim. Acta 1999, 63, 989–1001. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Golubev, S.V.; Schott, J. Dissolution kinetics of calcite, dolomite and magnesite at 25 °C and 0 to 50 atm pCO2. Chem. Geol. 2005, 217, 239–255. [Google Scholar] [CrossRef]
- Gong, Q.; Deng, J.; Wang, Q.; Yang, L.; She, M. Experimental determination of calcite dissolution rates and equilibrium concentrations in deionized water approaching calcite equilibrium. J. Earth Sci. 2010, 21, 402–411. [Google Scholar] [CrossRef]
- Taylor, K.C.; Nasr-El-Din, H.A.; Mehta, S. Anomalous acid reaction rates in carbonate reservoir rocks. SPE J. 2006, 11, 488–496. [Google Scholar] [CrossRef]
- Arvidson, R.S.; Ertan, I.E.; Amonette, J.E.; Luttge, A. Variation in calcite dissolution rates: A fundamental problem? Geochim. Cosmochim. Acta: J. Geochem. Soc. Meteorit. Soc. 2003, 67, 1623–1634. [Google Scholar] [CrossRef]
- Ma, C.; Kang, Z.; Zhang, L.; Xuan, H.; Nong, P.; Pan, S.; Kong, Q.; Zhu, Y.; Zhu, Z. Dissolution and precipitation of calcite in different water environments. Carsologica Sin. 2023, 42, 29. [Google Scholar]
- Gautelier, M.; Oelkers, E.H.; Schott, J. An experimental study of dolomite dissolution rates as a function of pH from −0.5 to 5 and temperature from 25 to 80 °C. Chem. Geol. 1999, 157, 13–26. [Google Scholar] [CrossRef]
- Dreybrodt, W. Processes in Karst Systems: Physics, Chemistry, and Geology; Springer Science & Business Media: Berlin, Germany, 2012; Volume 4. [Google Scholar]
- MacInnis, I.N.; Brantley, S.L. The role of dislocations and surface morphology in calcite dissolution. Geochim. Cosmochim. Acta 1992, 56, 1113–1126. [Google Scholar] [CrossRef]
- Schott, J.; Brantley, S.; Crerar, D.; Guy, C.; Borcsik, M.; Willaime, C. Dissolution kinetics of strained calcite. Geochim. Cosmochim. Acta 1989, 53, 373–382. [Google Scholar] [CrossRef]
- Plummer, L.N.; Busenberg, E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim. Cosmochim. Acta 1982, 46, 1011–1040. [Google Scholar] [CrossRef]
- She, M.; Shou, J.; Shen, A.; Pan, L.; Hu, A.; Hu, Y. Experimental simulation of dissolution law and porosity evolution of carbonate rock. Pet. Explor. Dev. 2016, 43, 616–625. [Google Scholar] [CrossRef]
- Rabie, A.; Gomaa, A.; Nasr-El-Din, H. Determination of reaction rate of in-situ gelled acids with calcite using the rotating disk apparatus. In Proceedings of the SPE International Production and Operations Conference and Exhibition, Florence, Italy, 20–22 September 2010; p. SPE–133501-MS. [Google Scholar]
- Chen, R.; Luo, M.; Luo, Z.; Chen, Z.; Zhou, H. Response relationship between chemical composition and dissolution rate of carbonate rocks in the Three Gorges Area. Carsologica Sin. 2019, 38, 258–264. [Google Scholar]
- Yoo, H.; Kim, Y.; Lee, W.; Lee, J. An experimental study on acid-rock reaction kinetics using dolomite in carbonate acidizing. J. Pet. Sci. Eng. 2018, 168, 478–494. [Google Scholar] [CrossRef]
- Guldberg, C.M.; Waage, P. Uber die chemische Affinität. J. Prakt. Chem. 1879, 127, 69–114. [Google Scholar] [CrossRef]
- Fan, Y.; Peng, H.; Chen, G.; Peng, J.; Han, H.; Qin, Y.; Wang, L.; Liu, D. Experimental study of the influences of different factors on the acid-rock reaction rate of carbonate rocks. J. Energy Storage 2023, 63, 107064. [Google Scholar] [CrossRef]
- Zaihua, L.I.U.; Dreybrodt, W.; Huaju, L.I. Comparison of Dissolution Rate-Determining Mechanisms between Limestone and Dolomite. Earth Sci. 2006, 31, 411–416. [Google Scholar]
Element | C | O | Ca | Si | Al | Mg | K | S | Fe |
---|---|---|---|---|---|---|---|---|---|
Content | 42.05% | 40.99% | 12.53% | 1.43% | 1.06% | 0.80% | 0.54% | 0.38% | 0.22% |
Mineral Name | Chemical Formula | Mineral Proportion |
---|---|---|
Calcite | CaCO3 | 65% |
Alunite | KAl3(SO4)2(OH)6 | 8% |
Anhydrite | CaSO4·2H2O | 6% |
Others | / | 21% |
pH | Ca2+ [mg/L] | Mg2+ [mg/L] | Total P [mg/L] | SO42− [mg/L] | F− [mg/L] | PO43− [mg/L] | TDS [mg/L] |
---|---|---|---|---|---|---|---|
4.03 | 323 | 92 | 592 | 1789 | 10.54 | 337 | 5142 |
Different pH Groups | Different Fracture Aperture Groups | ||||
---|---|---|---|---|---|
Rock Specimen ID | Fracture Aperture [mm] | pH | Rock Specimen ID | Fracture Aperture [mm] | pH |
HY01 | 0.5~0.3 | 4 | HY04 | 0.6~0.1 | 2 |
HY02 | 0.6~0.4 | 3 | HY05 | 0.3~0.1 | 2 |
HY03 | 0.7~0.3 | 2 | HY06 | 0.05~0.01 | 2 |
Different pH Groups | Different Fracture Aperture Groups | ||||
---|---|---|---|---|---|
Rock Specimen ID | Fracture Aperture [mm] | pH | Rock Specimen ID | Fracture Aperture [mm] | pH |
HY07 | 0.5~0.2 | 4 | HY10 | 0.7~0.1 | 2 |
HY08 | 0.5~0.1 | 3 | HY11 | 0.2~0.1 | 2 |
HY09 | 0.6~0.1 | 2 | HY12 | 0.05~0.01 | 2 |
Model Component Names | k [m2] | [1/Pa] | |
---|---|---|---|
Matrix | 4.6 × 10−14 | 0.05 | 1 × 10−5 |
Fracture | 5.6 × 10−13 | 0.3 | 1 × 10−4 |
Upper Surface Pressure of the Model [MPa] | Lower Surface Pressure of the Model [MPa] | Side of the Model | Initial C(HF) [mol/m3] | Initial C(H2SO4) [mol/m3] |
---|---|---|---|---|
0.1 | 0 | No-flow boundary | 0.6147 | 18.62 |
HY01 | HY02 | HY03 | HY07 | HY08 | HY09 | |
---|---|---|---|---|---|---|
Surface oxygen content before experiment [%] | 43.86 | 41.60 | 39.14 | 40.17 | 42.31 | 38.27 |
Surface oxygen content after experiment [%] | 76.09 | 76.18 | 72.46 | 68.14 | 70.33 | 67.26 |
Rock Specimens ID | Fracture Aperture [mm] | Dissolution Amount Per Unit Area [g/cm2] |
---|---|---|
HY04 | 0.6~0.1 | 0.0252 |
HY05 | 0.3~0.1 | 0.0261 |
HY06 | 0.05~0.01 | 0.0289 |
HY10 | 0.7~0.1 | 0.3886 |
HY11 | 0.2~0.1 | 0.3392 |
HY12 | 0.05~0.01 | 0.2901 |
Rock Specimen ID | Conductivity [μS/cm] | Ca2+ [mg/L] | Mg2+ [mg/L] | Chemical Dissolution Rate [mg/(L·d)] |
---|---|---|---|---|
HY03 | 966 | 460.1 | 86.8 | 48.402 |
HY04 | 992 | 458.2 | 87.8 | 48.585 |
HY05 | 954 | 457.8 | 92.7 | 48.998 |
HY06 | 929 | 420.3 | 109.8 | 52.127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Duan, G.; Zong, C.; Jin, M.; Chen, Z. Experimental and Modeling Study of Core-Scale Three-Dimensional Rough Fracture Acidic Wastewater Reaction with Carbonate Rocks. Appl. Sci. 2025, 15, 5944. https://doi.org/10.3390/app15115944
Yu W, Duan G, Zong C, Jin M, Chen Z. Experimental and Modeling Study of Core-Scale Three-Dimensional Rough Fracture Acidic Wastewater Reaction with Carbonate Rocks. Applied Sciences. 2025; 15(11):5944. https://doi.org/10.3390/app15115944
Chicago/Turabian StyleYu, Weiping, Guangfu Duan, Chenyu Zong, Min Jin, and Zhou Chen. 2025. "Experimental and Modeling Study of Core-Scale Three-Dimensional Rough Fracture Acidic Wastewater Reaction with Carbonate Rocks" Applied Sciences 15, no. 11: 5944. https://doi.org/10.3390/app15115944
APA StyleYu, W., Duan, G., Zong, C., Jin, M., & Chen, Z. (2025). Experimental and Modeling Study of Core-Scale Three-Dimensional Rough Fracture Acidic Wastewater Reaction with Carbonate Rocks. Applied Sciences, 15(11), 5944. https://doi.org/10.3390/app15115944