The Development and Application Status of Advanced Cement-Based Materials
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Funding
Conflicts of Interest
References
- Feng, S.; Xiao, H. Influence of Nano-SiO2 and Nano-TiO2 on properties and microstructure of cement-based materials. Constr. Build. Mater. 2025, 459, 139805. [Google Scholar] [CrossRef]
- Pan, X.; Wang, Y.; Kong, D.; Li, Y.; Cheng, Z.; Song, G.; Zuo, Y. Development, optimisation and performance prediction of a novel cement-based materials for borehole sealing. Constr. Build. Mater. 2025, 478, 141404. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Han, R.; Yu, B.; Wei, Y. Accounting process-related CO2 emissions from global cement production under shared socioeconomic pathways. J. Clean. Prod. 2018, 184, 451–465. [Google Scholar] [CrossRef]
- Chandramouli, K.; Srinivasa, R.P.; Pannirselvam, N.; Seshadri, S.; Sravana, P. Strength properties of glass fiber concrete. ARPN J. Eng. Appl. Sci. 2010, 5, 1–6. [Google Scholar]
- Banthia, N.; Sappakittipakorn, M. Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cem. Concr. Res. 2007, 37, 1366–1372. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Pomchiengpin, W.; Songpiriyakij, S. Post-crack (or post-peak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature. Constr. Build. Mater. 2010, 24, 1967–1974. [Google Scholar] [CrossRef]
- Nigro, E.; Cefarelli, G.; Bilotta, A.; Manfredi, G.; Cosenza, E. Guidelines for flexural resistance of FRP reinforced concrete slabs and beams in fire. Compos. Part B Eng. 2014, 58, 103–112. [Google Scholar] [CrossRef]
- Hameed, R.; Turatsinze, A.; Duprat, F.; Sellier, A. Bond stress-slip Behaviour of Steel Reinforcing Bar Embedded in Hybrid Fiber-reinforced Concrete. KSCE J. Civ. Eng. 2013, 17, 1700–1707. [Google Scholar] [CrossRef]
- Harajli, M.H.; Hout, M.; Jalkh, W. Local bond stress-slip behaviour of reinforcing bars embedded in plain and fiber concrete. ACI Mater. 1995, 92, 343–353. [Google Scholar] [CrossRef]
- Song, P.S.; Hwang, S. Mechanical Properties of High-Strength Steel Fiber-Reinforced Concrete. Constr. Build. Mat. 2004, 18, 669–673. [Google Scholar] [CrossRef]
- Graybeal, B.; Davis, M. Cylinder or cube: Strength testing of 80 to 200 MPa (116 to 29 ksi) Ultra-High-Performance-Fiber-Reinforced Concrete. ACI Mater. 2008, 105, 603–609. [Google Scholar]
- Seung, H.P.; Dong, J.K.; Gum, S.R.; Kyung, T.K. Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete. Cem. Concr. Comp. 2012, 34, 172–184. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J. Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cem. Concr. Res. 2004, 34, 1065–1069. [Google Scholar] [CrossRef]
- Lau, A.; Anson, M. Effect of high temperatures on high performance steel fibre reinforced concrete. Cem. Concr. Res. 2006, 36, 1698–1707. [Google Scholar] [CrossRef]
- Burroughs, J.F.; Shannon, J.; Rushing, T.S.; Yi, K.; Gutierrez, Q.B.; Harrelson, D.W. Potential of finely ground limestone powder to benefit ultra-high performance concrete mixtures. Constr. Build. Mater. 2017, 141, 335–342. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Nepal, J.; Das, B.B. Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review. J. Build. Eng. 2023, 79, 107794. [Google Scholar] [CrossRef]
- Kanagaraj, B.; Anand, N.; Johnson Alengaram, U.; Samuvel Raj, R.; Karthick, S. Limestone calcined clay cement (LC3): A sustainable solution for mitigating environmental impact in the construction sector. Resour. Conserv. Recycl. Adv. 2024, 21, 200197. [Google Scholar] [CrossRef]
- Richard, P.; Cheyrezy, M. Composition of reactive powder concretes. Cem. Concr. Res. 1995, 25, 1501–1511. [Google Scholar] [CrossRef]
- Song, B.; Huang, J.; Yang, M.; Zheng, M.; Yang, L.; Wang, F. Study on high supplementary cementitious materials content cement: Design and analysis based on response surface method. Constr. Build. Mater. 2025, 467, 140398. [Google Scholar] [CrossRef]
- Nedunuri, S.S.S.A.; Sertse, S.G.; Muhammad, S. Microstructural study of Portland cement partially replaced with fly ash, ground granulated blast furnace slag and silica fume as determined by pozzolanic activity. Constr. Build. Mater. 2020, 238, 117561. [Google Scholar] [CrossRef]
- Yazici, H. The effect of curing conditions on compressive strength of ultra-high strength concrete with high volume mineral admixtures. Build. Environ. 2006, 42, 2083–2089. [Google Scholar] [CrossRef]
- Sobolev, K.; Gutiérrez, M.F. How nanotechnology can change the concrete world: Part 1. Am. Ceram. Soc. Bull. 2005, 84, 14–18. [Google Scholar]
- Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Sobolev, K.; Amirjanov, A. The development of a simulation model of the dense packing of large particulate assemblies. Powder Technol. 2004, 141, 155–160. [Google Scholar] [CrossRef]
- Korpa, A.; Trettin, R. Nanoscale pozzolans for improving ultra-high performance cementitious binders. Cem. Int. 2007, 5, 74–83. [Google Scholar]
- Janus, M.; Strzałkowski, J.; Zając, K.; Kusiak-Nejman, E. Cement Clinker Modified by Photocatalyst—Selected Mechanical Properties and Photocatalytic Activity during NO and BTEX Decomposition. Appl. Sci. 2024, 14, 8855. [Google Scholar] [CrossRef]
- Babba, R.; Hebbache, K.; Douadi, A.; Boutlikht, M.; Hammouche, R.; Dahmani, S.; Del Serrone, G.; Moretti, L. Impact of Silica Sand on Mechanical Properties of Epoxy Resin Composites and Their Application in CFRP–Concrete Bonding. Appl. Sci. 2024, 14, 6599. [Google Scholar] [CrossRef]
- Almeida, J.A.P.P.; Barros, J.A.O.; Pereira, E.N.B. Toughness of Natural Hydraulic Lime Fibre-Reinforced Mortars for Masonry Strengthening Overlay Systems. Appl. Sci. 2024, 14, 1947. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, C.-W. The Development and Application Status of Advanced Cement-Based Materials. Appl. Sci. 2025, 15, 5850. https://doi.org/10.3390/app15115850
Tang C-W. The Development and Application Status of Advanced Cement-Based Materials. Applied Sciences. 2025; 15(11):5850. https://doi.org/10.3390/app15115850
Chicago/Turabian StyleTang, Chao-Wei. 2025. "The Development and Application Status of Advanced Cement-Based Materials" Applied Sciences 15, no. 11: 5850. https://doi.org/10.3390/app15115850
APA StyleTang, C.-W. (2025). The Development and Application Status of Advanced Cement-Based Materials. Applied Sciences, 15(11), 5850. https://doi.org/10.3390/app15115850