Impact of Plant–Water Interactions on Long-Term Simulations in Deep-Rooted Plantations Using Noah Land Surface Model with Multiparameterization Options (Noah-MP)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description and Improvement
2.1.1. Dynamic Vegetation Option
2.1.2. Dynamic Root Option
2.1.3. Soil Moisture Loss Without Dynamic Vegetation
2.1.4. Model Improvement
2.2. Study Area and Data
2.2.1. Study Area
2.2.2. Data
2.3. Model Experiments
2.4. Model Evaluation
3. Results
3.1. Sensitivity Experiments
3.1.1. Soil Stratification Schemes
3.1.2. Parameter a Schemes
3.2. The Effect of Plant–Water Interactions on Long-Term Simulation
4. Discussion
4.1. How to Influence the Soil Water Content in the Soil Profile
4.2. Relationship Between the Leaf Area Index and Vegetation Transpiration
4.3. Relationship Between Root Water Uptake and Vegetation Transpiration
4.4. Evapotranspiration, Soil Water Storage, and Precipitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arora, V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys. 2002, 40, 3-1–3-26. [Google Scholar] [CrossRef]
- Gerten, D.; Schaphoff, S.; Haberlandt, U.; Lucht, W.; Sitch, S. Terrestrial vegetation and water balance—Hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 2004, 286, 249–270. [Google Scholar] [CrossRef]
- Feng, H.; Zou, B.; Luo, J. Coverage-dependent amplifiers of vegetation change on global water cycle dynamics. J. Hydrol. 2017, 550, 220–229. [Google Scholar] [CrossRef]
- Churkina, G.; Running, S.W.; Schloss, A.L.; The Participants of the Potsdam NPP Model Intercomparison. Comparing global models of terrestrial net primary productivity (NPP): The importance of water availability. Glob. Change Biol. 1999, 5, 46–55. [Google Scholar] [CrossRef]
- Huber, S.; Fensholt, R.; Rasmussen, K. Water availability as the driver of vegetation dynamics in the African Sahel from 1982 to 2007. Glob. Planet. Change 2011, 76, 186–195. [Google Scholar] [CrossRef]
- Cui, J.; Lian, X.; Huntingford, C.; Gimeno, L.; Wang, T.; Ding, J.; Piao, S. Global water availability boosted by vegetation–driven changes in atmospheric moisture transport. Nat. Geosci. 2022, 15, 982–988. [Google Scholar] [CrossRef]
- Scott, R.L.; Huxman, T.E.; Barron-Gafford, G.A.; Darrel Jenerette, G.; Young, J.M.; Hamerlynck, E.P. When vegetation change alters ecosystem water availability. Glob. Change Biol. 2014, 20, 2198–2210. [Google Scholar] [CrossRef]
- Tabacchi, E.; Lambs, L.; Guilloy, H.; Planty-Tabacchi, A.M.; Muller, E.; Decamps, H. Impacts of riparian vegetation on hydrological processes. Hydrol. Process. 2000, 14, 2959–2976. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.D. Impacts of vegetation dynamics on hydrological simulations under drought conditions in a humid river basin in Southern China. Ecohydrology 2024, 17, e2630. [Google Scholar] [CrossRef]
- Trautmann, T.; Koirala, S.; Carvalhais, N.; Güntner, A.; Jung, M. The importance of vegetation in understanding terrestrial water storage variations. Hydrol. Earth Syst. Sci. 2022, 26, 1089–1109. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res.-Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- McMichael, C.E.; Hope, A.S.; Loaiciga, H.A. Distributed hydrological modelling in California semi-arid shrublands: MIKE SHE model calibration and uncertainty estimation. J. Hydrol. 2006, 317, 307–324. [Google Scholar] [CrossRef]
- Carter, C.; Liang, S. Comprehensive evaluation of empirical algorithms for estimating land surface evapotranspiration. Agric. For. Meteorol. 2018, 256, 334–345. [Google Scholar] [CrossRef]
- Peng, H.; Jia, Y.; Tague, C.; Slaughter, P. An eco-hydrological model-based assessment of the impacts of soil and water conservation management in the Jinghe river basin, China. Water 2015, 7, 6301–6320. [Google Scholar] [CrossRef]
- Peng, H.; Tague, C.; Jia, Y. Evaluating the eco-hydrologic impacts of reforestation in the Loess Plateau, China, using an eco-hydrologic model. Ecohydrology 2016, 9, 498–513. [Google Scholar] [CrossRef]
- Braakhekke, M.C.; Doelman, J.C.; Baas, P.; Müller, C.; Schaphoff, S.; Stehfest, E.; Van Vuuren, D.P. Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model. Earth Syst. Dyn. 2019, 10, 617–630. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Xia, Y. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res.-Atmos. 2011, 116, D12109. [Google Scholar] [CrossRef]
- Dai, Y.J.; Dickinson, R.E.; Wang, Y.P. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Clim. 2004, 17, 2281–2299. [Google Scholar] [CrossRef]
- Bonan, G.B.; Levis, S.; Sitch, S.; Vertenstein, M.; Oleson, K.W. A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Glob. Change Biol. 2003, 9, 1543–1566. [Google Scholar] [CrossRef]
- Hosseini, A.; Mocko, D.M.; Brunsell, N.A.; Kumar, S.V.; Mahanama, S.; Arsenault, K.; Roundy, J.K. Understanding the impact of vegetation dynamics on the water cycle in the Noah-MP model. Front. Water 2022, 4, 925852. [Google Scholar] [CrossRef]
- Lei, H.; Yang, D.; Huang, M. Impacts of climate change and vegetation dynamics on runoff in the mountainous region of the Haihe River basin in the past five decades. J. Hydrol. 2014, 511, 786–799. [Google Scholar] [CrossRef]
- Ma, N.; Niu, G.Y.; Xia, Y.; Cai, X.; Zhang, Y.; Ma, Y.; Fang, Y. A systematic evaluation of Noah-MP in simulating land-atmosphere energy, water, and carbon exchanges over the continental United States. J. Geophys. Res.-Atmos. 2017, 122, 12245–12268. [Google Scholar] [CrossRef]
- Zhu, Q.; Riley, W.J.; Tang, J.; Collier, N.; Hoffman, F.M.; Yang, X.; Bisht, G. Representing nitrogen, phosphorus, and carbon interactions in the E3SM land model: Development and global benchmarking. J. Adv. Model. Earth Syst. 2019, 11, 2238–2258. [Google Scholar] [CrossRef]
- Yan, B.; Dickinson, R.E. Modeling hydraulic redistribution and ecosystem response to droughts over the Amazon basin using Community Land Model 4.0 (CLM4). J. Geophys. Res.-Biogeosci. 2014, 119, 2130–2143. [Google Scholar] [CrossRef]
- Wu, W.Y.; Yang, Z.L.; Barlage, M. The impact of Noah-MP physical parameterizations on modeling water availability during droughts in the Texas–Gulf region. J. Hydrometeorol. 2022, 22, 1221–1233. [Google Scholar] [CrossRef]
- Niu, G.Y.; Fang, Y.H.; Chang, L.L.; Jin, J.M.; Yuan, H.; Zeng, X. Enhancing the Noah-MP ecosystem response to droughts with an explicit representation of plant water storage supplied by dynamic root water uptake. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002062. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Goldsmith, G.R.; Alvarado-Barrientos, M.S.; Rebel, K.; Van Osch, F.P.; Rietkerk, M.; Dawson, T.E. Ecohydrological advances and applications in plant–water relations research: A review. J. Plant Ecol. 2011, 4, 3–22. [Google Scholar] [CrossRef]
- Fatichi, S.; Pappas, C.; Ivanov, V.Y. Modeling plant–water interactions: An ecohydrological overview from the cell to the global scale. WIREs Water 2016, 3, 327–368. [Google Scholar] [CrossRef]
- Gul, M.U.; Paul, A.; S, M.; Chehri, A. Hydrotropism: Understanding the impact of water on plant movement and adaptation. Water 2013, 15, 567. [Google Scholar] [CrossRef]
- Giehl, R.F.; von Wirén, N. Hydropatterning—How roots test the waters. Science 2018, 362, 1358–1359. [Google Scholar] [CrossRef]
- Christina, M.; Nouvellon, Y.; Laclau, J.P.; Stape, J.L.; Bouillet, J.P.; Lambais, G.R.; Le Maire, G. Importance of deep water uptake in tropical eucalypt forest. Funct. Ecol. 2017, 31, 509–519. [Google Scholar] [CrossRef]
- Mainiero, R.; Kazda, M. Depth-related fine root dynamics of Fagus sylvatica during exceptional drought. For. Ecol. Manag. 2006, 237, 135–142. [Google Scholar] [CrossRef]
- Mokany, K.; Raison, R.J.; Prokushkin, A.S. Critical analysis of root: Shoot ratios in terrestrial biomes. Glob. Change Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Y.; An, Z.; Li, R.; Xu, Y.; Zhang, P.; Yang, Y.; Wang, T. Deep root information “hidden in the dark”: A case study on the 21-m soil profile of Robinia pseudoacacia in the critical zone of the Chinese loess Plateau. Catena 2022, 213, 106121. [Google Scholar] [CrossRef]
- Wu, W.; Li, H.; Feng, H.; Si, B.; Chen, G.; Meng, T.; Li, Y.; Siddique, K.H. Precipitation dominates the transpiration of both the economic forest (Malus pumila) and ecological forest (Robinia pseudoacacia) on the Loess Plateau after about 15 years of water depletion in deep soil. Agric. For. Meteorol. 2021, 297, 108244. [Google Scholar] [CrossRef]
- Tao, Z.; Neil, E.; Si, B. Determining deep root water uptake patterns with tree age in the Chinese loess area. Agric. Water Manag. 2021, 249, 106810. [Google Scholar] [CrossRef]
- Wang, P.; Niu, G.Y.; Fang, Y.H.; Wu, R.J.; Yu, J.J.; Yuan, G.F.; Scott, R.L. Implementing dynamic root optimization in Noah-MP for simulating phreatophytic root water uptake. Water Resour. Res. 2018, 54, 1560–1575. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- He, P.; Ma, J.; Han, Z.; Shi, M.; Xu, D.; Sun, Z. Relationship between multi-scale climate factors and performance of ecological engineering on the Loess Plateau, China. J. For. Res. 2022, 33, 789–800. [Google Scholar] [CrossRef]
- Ma, L.; Liu, X.; Chai, J.; Wang, Y.; Yang, J. Effects of slope aspect and rainfall on belowground deep fine root traits and aboveground tree height. Front. Plant Sci. 2021, 12, 684468. [Google Scholar]
- Wu, W.; Chen, G.; Meng, T.; Li, C.; Feng, H.; Si, B.; Siddique, K.H. Effect of different vegetation restoration on soil properties in the semi-arid Loess Plateau of China. Catena 2023, 220, 106630. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, X.; Shao, M. Loess thickness variations across the Loess Plateau of China. Surv. Geophys. 2018, 39, 715–727. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, M.A.; Liu, Z. Vertical distribution and influencing factors of soil water content within 21-m profile on the Chinese Loess Plateau. Geoderma 2013, 193, 300–310. [Google Scholar] [CrossRef]
- Li, H. Root Water Uptake Process in Deep Soil for Forest Growing on the Loess Plateau and Its Effect on Water Stress and Soil Carbon Input; Northwest A & F University: Yangling, China, 2019. [Google Scholar]
- Jia, X.; Shao, M.; Zhu, Y.; Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 2015, 546, 113–122. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Wang, L.; Jia, X.; Zhao, C.; Zhang, P. Spatial-temporal dynamics and recovery mechanisms of dried soil layers under Robinia pseudoacacia forest based on in-situ field data from 2017 to 2020. Land Degrad. Dev. 2022, 33, 2500–2511. [Google Scholar] [CrossRef]
- Wang, S.; Yang, M.; Gao, X.; Zhang, Z.; Wang, X.; Zhao, X.; Wu, P. Comparison of the root-soil water relationship of two typical revegetation species along a precipitation gradient on the Loess Plateau. Environ. Res. Lett. 2021, 16, 064054. [Google Scholar] [CrossRef]
- Feng, H.; Jin, J. Responses of vegetation to hydroclimatic variables on the Loess Plateau after large scale vegetation restoration. Hydrol. Process. 2024, 38, e15283. [Google Scholar] [CrossRef]
- Xiao, J.Y.; Xie, B.G.; Zhou, K.C.; Liang, C.; Li, J.H.; Xie, J.; Zhang, X.M. Bidirectional dependency between vegetation and terrestrial water storage in China. J. Hydrol. 2023, 626, 130313. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, C.; Chen, T.; Zhang, A. A weighted-time-lag method to detect lag vegetation response to climate variation: A case study in loess plateau, China, 1982–2013. Remote Sens. 2021, 13, 923. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Liu, M.M.; Xue, Z.H.; Bagherzadeh, A.; Liu, M.Y. Spatio-temporal variation characteristics of NDVI and its response climate on the loess plateau from 1985 to 2015. Catena 2021, 203, 105331. [Google Scholar] [CrossRef]
- Zhao, M.; Geruo, A.; Zhang, J.; Velicogna, I.; Liang, C.; Li, Z. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 2021, 4, 56–62. [Google Scholar] [CrossRef]
- Shao, R.; Zhang, B.; Su, T.; Long, B.; Cheng, L.; Xue, Y.; Yang, W. Estimating the increase in regional evaporative water consumption as a result of vegetation restoration over the Loess Plateau, China. J. Geophys. Res.-Atmos. 2019, 124, 11783–11802. [Google Scholar] [CrossRef]
- Jiao, Y.; Lei, H.; Yang, D.; Huang, M.; Liu, D.; Yuan, X. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model. J. Hydrol. 2017, 551, 116–131. [Google Scholar] [CrossRef]
- Agnihotri, J.; Behrangi, A.; Tavakoly, A.; Geheran, M.; Farmani, M.A.; Niu, G.Y. Higher frozen soil permeability represented in a hydrological model improves spring streamflow prediction from river basin to continental scales. Water Resour. Res. 2023, 59, e2022WR033075. [Google Scholar] [CrossRef]
- Chang, L.L.; Yuan, R.; Gupta, H.V.; Winter, C.L.; Niu, G.Y. Why is the terrestrial water storage in dryland regions declining? A perspective based on gravity recovery and climate experiment satellite observations and Noah land surface model with multiparameterization schemes model simulations. Water Resour. Res. 2020, 56, e2020WR027102. [Google Scholar] [CrossRef]
- Cai, X.; Yang, Z.L.; David, C.H.; Niu, G.Y.; Rodell, M. Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin. J. Geophys. Res.-Atmos. 2014, 119, 23–38. [Google Scholar] [CrossRef]
- Chen, G.; Meng, T.; Wu, W.; Si, B.; Li, M.; Liu, B.; Wu, S.; Feng, H.; Siddique, K.H. Evaluating potential groundwater recharge in the unsteady state for deep-rooted afforestation in deep loess deposits. Sci. Total Environ. 2023, 858, 159837. [Google Scholar] [CrossRef]
- Li, H.; Luo, Y.; Sun, L.; Li, X.; Ma, C.; Wang, X.; Jiang, T.; Zhu, H. Modelling the artificial forest (Robinia pseudoacacia L.) root–soil water interactions in the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2022, 26, 17–34. [Google Scholar] [CrossRef]
- Yan, F.; Shangguan, W.; Zhang, J.; Hu, B. Depth-to-Bedrock Map of China at a Spatial Resolution of 100 Meters. Sci. Data 2020, 7, 2. [Google Scholar] [CrossRef]
- Du, Z.; Yu, L.; Yang, J.; Xu, Y.; Chen, B.; Peng, S.; Zhang, T.; Fu, H.; Harris, N.; Gong, P. A global map of planting years of plantations. Sci. Data 2022, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Dai, Y.; Wei, S.; Duan, Q.; Liu, B.; Fu, S.; Niu, G. Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeorol. 2013, 14, 869–887. [Google Scholar] [CrossRef]
- Jin, J.; Wang, L.; Yang, J.; Si, B.; Niu, G.Y. Improved runoff simulations for a highly varying soil depth and complex terrain watershed in the Loess Plateau with the Community Land Model version 5. Geosci. Model Dev. 2022, 15, 3405–3416. [Google Scholar] [CrossRef]
- Shao, J.; Si, B.; Jin, J. Extreme precipitation years and their occurrence frequency regulate long-term groundwater recharge and transit time. Vadose Zone J. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Naithani, K.J.; Baldwin, D.C.; Gaines, K.P.; Lin, H.; Eissenstat, D.M. Spatial distribution of tree species governs the spatio-temporal interaction of leaf area index and soil moisture across a forested landscape. PLoS ONE 2013, 8, e58704. [Google Scholar] [CrossRef]
- Brunner, I.; Herzog, C.; Dawes, M.A.; Arend, M.; Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 2015, 6, 547. [Google Scholar] [CrossRef]
- Granier, A.; Loustau, D.; Bréda, N. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann. For. Sci. 2000, 57, 755–765. [Google Scholar] [CrossRef]
- Wei, Z.; Yoshimura, K.; Wang, L.; Miralles, D.G.; Jasechko, S.; Lee, X. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 2017, 44, 2792–2801. [Google Scholar] [CrossRef]
- Bucci, S.J.; Scholz, F.G.; Goldstein, G.; Hoffmann, W.A.; Meinzer, F.C.; Franco, A.C.; Miralles-Wilhelm, F. Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna. Agric. For. Meteorol. 2008, 148, 839–849. [Google Scholar] [CrossRef]
- Forrester, D.I.; Collopy, J.J.; Beadle, C.L.; Warren, C.R.; Baker, T.G. Effect of thinning, pruning and nitrogen fertiliser application on transpiration, photosynthesis and water-use efficiency in a young Eucalyptusnitens plantation. For. Ecol. Manag. 2012, 266, 286–300. [Google Scholar] [CrossRef]
- Williams, C.A.; Albertson, J.D. Contrasting short-and long-timescale effects of vegetation dynamics on water and carbon fluxes in water-limited ecosystems. Water Resour. Res. 2005, 41, W0600. [Google Scholar] [CrossRef]
- Deng, M.; Meng, X.; Lu, Y.; Shu, L.; Li, Z.; Zhao, L.; Chen, H.; Shang, L.; Sheng, D.; Ao, X. Impact of climatic and vegetation dynamic change on runoff over the Three Rivers Source Region based on the Community Land Model. Clim. Dyn. 2023, 61, 1193–1208. [Google Scholar] [CrossRef]
- Jian, D.; Niu, G.; Ma, Z.; Liu, H.; Guan, D.; Zhou, X.; Zhou, J. Limited driving of elevated CO2 on vegetation greening over global drylands. Environ. Res. Lett. 2023, 18, 104024. [Google Scholar] [CrossRef]
- MacBean, N.; Scott, R.L.; Biederman, J.A.; Ottlé, C.; Vuichard, N.; Ducharne, A.; Kolb, T.; Dore, S.; Litvak, M.; Moore, D.J. Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites. Hydrol. Earth Syst. Sci. 2020, 24, 5203–5230. [Google Scholar] [CrossRef]
- Sprenger, M.; Tetzlaff, D.; Buttle, J.; Laudon, H.; Soulsby, C. Water ages in the critical zone of long-term experimental sites in northern latitudes. Hydrol. Earth Syst. Sci. 2018, 22, 3965–3981. [Google Scholar] [CrossRef]
- Evaristo, J.; Kim, M.; van Haren, J.; Pangle, L.A.; Harman, C.J.; Troch, P.A.; McDonnell, J.J. Characterizing the fluxes and age distribution of soil water, plant water, and deep percolation in a model tropical ecosystem. Water Resour. Res. 2019, 55, 3307–3327. [Google Scholar] [CrossRef]
- Luo, Z.; Nie, Y.; Chen, H.; Guan, H.; Zhang, X.; Wang, K. Water age dynamics in plant transpiration: The effects of climate patterns and rooting depth. Water Resour. Res. 2023, 59, e2022WR033566. [Google Scholar] [CrossRef]
- Aston, M.J.; Lawlor, D.W. The relationship between transpiration, root water uptake, and leaf water potential. J. Exp. Bot. 1979, 30, 169–181. [Google Scholar] [CrossRef]
- Van Leperen, W.; Madery, H. A new method to measure plant water uptake and transpiration simultaneously. J. Exp. Bot. 1994, 45, 51–60. [Google Scholar] [CrossRef]
- Behzad, H.M.; Arif, M.; Duan, S.; Kavousi, A.; Cao, M.; Liu, J.; Jiang, Y. Seasonal variations in water uptake and transpiration for plants in a karst critical zone in China. Sci. Total Environ. 2023, 860, 160424. [Google Scholar] [CrossRef]
- Verma, P.; Loheide, S.P., II; Eamus, D.; Daly, E. Root water compensation sustains transpiration rates in an Australian woodland. Adv. Water Resour. 2014, 74, 91–101. [Google Scholar] [CrossRef]
- Miralles, D.G.; De Jeu, R.A.M.; Gash, J.H.; Holmes, T.R.H.; Dolman, A.J. Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci. 2011, 15, 967–981. [Google Scholar] [CrossRef]
- Wang-Erlandsson, L.; Van Der Ent, R.J.; Gordon, L.J.; Savenije, H.H.G. Contrasting roles of interception and transpiration in the hydrological cycle–Part 1: Temporal characteristics over land. Earth Syst. Dynam. 2014, 5, 441–469. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Kemp, P.R.; Tenhunen, J.D. Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis. Plant Ecol. 2000, 150, 145–159. [Google Scholar] [CrossRef]
- Teuling, A.J.; Seneviratne, S.I.; Williams, C.; Troch, P.A. Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett. 2006, 33, L23403. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Yu, X.; Jia, G.; Liu, Z.; Sun, L.; Zheng, P.; Zhu, X. Grassland soil moisture fluctuation and its relationship with evapotranspiration. Ecol. Indic. 2021, 131, 108196. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; Gao, G.Y.; Yao, X.L.; Zhou, J. Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2012, 16, 2883–2892. [Google Scholar] [CrossRef]
- Chen, Q.W.; Liu, M.J.; Lyu, J.; Li, G.; Otsuki, K.; Yamanaka, N.; Du, S. Characterization of dominant factors on evapotranspiration with seasonal soil water changes in two adjacent forests in the semiarid Loess Plateau. J. Hydrol. 2022, 613, 128427. [Google Scholar] [CrossRef]
- Villarreal, S.; Vargas, R.; Yepez, E.A.; Acosta, J.S.; Castro, A.; Escoto-Rodriguez, M.; Lopze, E.; Martinez-Qsuna, J.; Rodriguez, J.C.; Simth, S.V.; et al. Contrasting precipitation seasonality influences evapotranspiration dynamics in water-limited shrublands. J. Geophys. Res.-Biogeosci. 2016, 121, 494–508. [Google Scholar] [CrossRef]
Scheme 1 | Scheme 2 | ||||
---|---|---|---|---|---|
Sequence | Thickness | Total Thickness | Sequence | Thickness | Total Thickness |
1–124 | 0.1 | 12.4 | 1–2 | 0.05 | 0.10 |
125–147 | 0.2 | 17.0 | 3 | 0.06 | 0.16 |
148–154 | 0.4 | 19.8 | 4 | 0.10 | 0.26 |
155–156 | 0.6 | 21.0 | 5 | 0.14 | 0.40 |
157–166 | 0.8 | 29.0 | 6–28 | 0.20 | 5.0 |
167–184 | 1.0 | 47.0 | 29–68 | 0.40 | 21.0 |
185–194 | 1.2 | 59.0 | 69 | 0.60 | 21.6 |
195–204 | 1.4 | 73.0 | 70 | 0.80 | 22.4 |
205–214 | 1.6 | 89.0 | 71–81 | 1.00 | 33.4 |
215–234 | 1.8 | 125.0 | 82–91 | 1.20 | 45.4 |
235–239 | 2 | 135.0 | 92–95 | 1.40 | 51.0 |
- | - | - | 96–100 | 1.60 | 59.0 |
- | - | - | 101–105 | 1.80 | 68.0 |
- | - | - | 106–138 | 2.00 | 134.0 |
Parameterization Options | Used in This Study |
---|---|
Dynamic vegetation | 2: Leaf area predicted |
Dynamic root | 1: Dynamic root |
Canopy stomatal resistance | 1: Ball–Berry |
Surface runoff | 3: Original surface runoff |
Supercooled liquid water | 1: No interaction |
Frozen soil permeability | 1: Linear effect |
Radiation transfer | 1: Modified two-stream |
Snow surface albedo | 2: CLASS |
Snow–rain partitioning | 1: Jordan91 |
Soil water retention | 1: Van Genutchen |
Snow/soil temperature time scheme | 1: Semi-implicit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; Jin, J.; Niu, G. Impact of Plant–Water Interactions on Long-Term Simulations in Deep-Rooted Plantations Using Noah Land Surface Model with Multiparameterization Options (Noah-MP). Appl. Sci. 2025, 15, 5807. https://doi.org/10.3390/app15115807
Feng H, Jin J, Niu G. Impact of Plant–Water Interactions on Long-Term Simulations in Deep-Rooted Plantations Using Noah Land Surface Model with Multiparameterization Options (Noah-MP). Applied Sciences. 2025; 15(11):5807. https://doi.org/10.3390/app15115807
Chicago/Turabian StyleFeng, Huijun, Jiming Jin, and Guoyue Niu. 2025. "Impact of Plant–Water Interactions on Long-Term Simulations in Deep-Rooted Plantations Using Noah Land Surface Model with Multiparameterization Options (Noah-MP)" Applied Sciences 15, no. 11: 5807. https://doi.org/10.3390/app15115807
APA StyleFeng, H., Jin, J., & Niu, G. (2025). Impact of Plant–Water Interactions on Long-Term Simulations in Deep-Rooted Plantations Using Noah Land Surface Model with Multiparameterization Options (Noah-MP). Applied Sciences, 15(11), 5807. https://doi.org/10.3390/app15115807