Prediction of Corroded Pipeline Failure Pressure Based on Empirical Knowledge and Machine Learning
Abstract
:1. Introduction
2. Methodology
2.1. Empirical Formula
- (1)
- ASME B31G
- (2)
- Modified ASME B31G
- (3)
- PCORRC Criteria
- (4)
- DNV RP-F101
2.2. Constraining Optimization by Empirical Formulas-Incorporated Loss Function
3. Training Details
3.1. Dataset
3.2. Training Setting
3.3. Evaluation Metrics
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mousavi, S.S.; Moghaddam, A.S. Failure pressure estimation error for corroded pipeline using various revisions of ASME B31G. Eng. Fail. Anal. 2020, 109, 104284. [Google Scholar] [CrossRef]
- Arumugam, T.; Karuppanan, S.; Ovinis, M. Finite element analyses of corroded pipeline with single defect subjected to internal pressure and axial compressive stress. Mar. Struct. 2020, 72, 102746. [Google Scholar] [CrossRef]
- O’Grady, T.; Hisey, D.; Kiefner, J. Pressure calculation for corroded pipe developed. Oil Gas J. 1992, 90, 442. [Google Scholar]
- Su, Y.; Li, J.F.; Yu, B.; Zhao, Y.L.; Yao, J. Fast and accurate prediction of failure pressure of oil and gas defective pipelines using the deep learning model. Reliab. Eng. Syst. Saf. 2021, 216, 108016. [Google Scholar] [CrossRef]
- Li, M.Z.; Liu, Z.Y.; Zhao, Y.; Zhou, Y.; Huang, P.; Li, X.; Li, P.L.; Wang, X.; Zhang, D.P. Effects of corrosion defect and tensile load on injection pipe burst in CO2 flooding. J. Hazard. Mater. 2019, 366, 65–77. [Google Scholar] [CrossRef]
- Belachew, C.T.; Lsmail, M.; Karuppanan, S. Burst Strength Analysis of Corroded Pipelines by Finite Element Method. J. Appl. Sci. 2011, 1845, 1850. [Google Scholar] [CrossRef]
- Silva, R.C.C.; Guerreiro, J.N.C.; Loula, A.F.D. A study of pipe interacting corrosion defects using the FEM and neural networks. Adv. Eng. Softw. 2007, 38, 868–875. [Google Scholar] [CrossRef]
- Kumar, S.D.V.; Lo, M.; Karuppanan, S.; Ovinis, P. Empirical Failure Pressure Prediction Equations for Pipelines with Longitudinal Interacting Corrosion Defects Based on Artificial Neural Network. Mar. Sci. Eng. 2022, 10, 764. [Google Scholar] [CrossRef]
- Xu, W.Z.; Li, C.B.; Choung, J.; Lee, J.M. Corroded pipeline failure analysis using artificial neural network schemes. Adv. Eng. Softw. 2017, 112, 255–266. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Wang, W.; Li, Y.; Shi, L.; Li, Y. Residual strength prediction of corroded pipelines using multilayer perceptron and modified feedforward neural network. Reliab. Eng. Syst. Saf. 2023, 231, 108980. [Google Scholar] [CrossRef]
- Xie, L.; Hbrekke, S.; Liu, Y.; Lundteigen, M.A. Operational data-driven prediction for failure rates of equipment in safety instrumented systems: A case study from the oil and gas industry. J. Loss Prev. Process Ind. 2019, 60, 96–105. [Google Scholar] [CrossRef]
- Canonaco, G.; Roveri MAlippi, C.; Podenzani, F.; Bennardo, A.; Conti, M.; Mancini, N. A transfer-learning approach for corrosion prediction in pipeline infrastructures. Appl. Intell. 2022, 52, 7622–7637. [Google Scholar] [CrossRef]
- Cai, B.P.; Zhang, Y.P.; Yuan, X.B.; Gao, C.T.; Liu, Y.H.; Chen, G.M.; Liu, Z.K.; Ren-Jie, J.I. A Dynamic-Bayesian-Networks-Based Resilience Assessment Approach of Structure Systems: Subsea Oil and Gas Pipelines as A Case Study. China Ocean. Eng. 2020, 34, 597–607. [Google Scholar] [CrossRef]
- Ma, Y.L.; Zheng, J.Q.; Liang, Y.T.; Klemeš, J.J.; Du, J.; Liao, Q.; Lu, H.F.; Wang, B.H. Deeppipe: Theory-guided neural network method for predicting burst pressure of corroded pipelines. Process Saf. Environ. Prot. 2022, 162, 595–609. [Google Scholar] [CrossRef]
- Chouchaoui, B. Evaluating the Remaining Strength of Corroded Pipelines; University of Waterloo: Waterloo, Canada, 1994. [Google Scholar]
- Kiefner, J.F.; Vieth, P.H. A Modified Criterion for Evaluating the Remaining Strength of Corroded Pipe; Battelle Columbus Div.: Columbus, OH, USA, 1989. [Google Scholar]
- Stephens, D.R.; Leis, B.N. Development of an Alternative Criterion for Residual Strength of Corrosion Defects in Moderate to High Toughness Pipe. In Proceedings of the 2000 3rd International Pipeline Conference, American Society of Mechanical Engineers Digital Collection, Calgary, AB, Canada, 1–5 October 2000. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Gao, J.; Yang, P.; Li, X.; Zhou, J.; Liu, J.K. Analytical prediction of failure pressure for pipeline with long corrosion defect. Ocean. Eng. 2019, 191, 106497. [Google Scholar] [CrossRef]
- Freire, J.L.F.; Vieira, R.D.; Castro, J.T.P.; Benjamin, A.C. Part 3: Burst tests of pipeline with extensive longitudinal metal loss. Exp. Tech. 2017, 30, 60–65. [Google Scholar] [CrossRef]
- Mok, D.H.B.; Pick, R.J.; Glover, A.G.; Hoff, R. Bursting of line pipe with long external corrosion. Int. J. Press. Vessel. Pip. 1991, 46, 195–216. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, W.; Lee, Y.; Oh, K. The Evaluation of Failure Pressure for Corrosion Defects Within Girth or Seam Weld in Transmission Pipelines. In Proceedings of the 2004 International Pipeline Conference, American Society of Mechanical Engineers Digital Collection, Calgary, AB, Canada, 4–8 October 2004; pp. 1847–1855. [Google Scholar] [CrossRef]
- Chen, J.X.; Li, A.Z.; Yang, Q.K.; Lin, C.; Ren, Y.C.; Jin, S.R.; Li, C.C.; Qi, M. Novel In0.49Ga0.51P/(In)GaAs/GaAs p-type modulation doped heterostructure grown by gas source molecular beam epitaxy. J. Cryst. Growth 1998, 193, 28–32. [Google Scholar] [CrossRef]
- Shuai, Y.; Shuai, J.; Liu, C.Y. Research on the reliability methods of corroded pipeline. Pet. Sci. Bull. 2017, 2, 288–297. [Google Scholar]
- Mannucci, G.; Demofonti, G. Fracture Properties of API X 100 Gas Pipeline Steels; Europipe: Mülheim an der Ruhr, Germany, 2002; pp. 1–128. [Google Scholar]
- Wu, H.; He, K.M. Group Normalization. Int. J. Comput. Vis. 2019, 128, 742–755. [Google Scholar] [CrossRef]
- Xiao, R.; Zayed, T.; Meguid, M.A.; Sushama, L. Predicting failure pressure of corroded gas pipelines: A data-driven approach using machine learning. Process Saf. Environ. Prot. 2024, 184, 1424–1441. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.F.; Wang, W.; Han, K.; Shuai, Y.; Wang, G.X. A novel assessment method for residual strength of CO2 pipelines with multiple defects based on RF-MLP. Reliab. Eng. Syst. Saf. 2025, 261, 111088. [Google Scholar] [CrossRef]
- Xu, L.; Wen, S.; Huang, H.; Tang, Y.; Wang, Y.; Pan, C. Corrosion failure prediction in natural gas pipelines using an interpretable XGBoost model: Insights and applications. Energy 2025, 325, 136157. [Google Scholar] [CrossRef]
- Lu, H.; Peng, H.; Xu, Z.D.; Qin, G.; Azimi, M.; Matthews, J.C.; Cao, L. Theory and Machine Learning Modeling for Burst Pressure Estimation of Pipeline with Multipoint Corrosion. J. Pipeline Syst. Eng. Pract. 2023, 14, 1481. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Mo, L.; Tang, Y.; Wang, F.; Li, C. The research progress and prospect of data mining methods on corrosion prediction of oil and gas pipelines. Eng. Fail. Anal. 2023, 144, 106951. [Google Scholar] [CrossRef]
Literature | Materials | PF | D | t | L | H | W | σ | σUTS |
---|---|---|---|---|---|---|---|---|---|
(Freire et al., 2006) [20] | X80 | 22.68 | 458.8 | 8.1 | 39.6 | 5.39 | 31.9 | 601 | 684 |
X80 | 24.2 | 459.4 | 8 | 40.05 | 3.75 | 32 | 589 | 730.5 | |
X60 | 14.4 | 323.9 | 9.8 | 255.6 | 7.08 | 95.3 | 452 | 542 | |
X60 | 14.07 | 323.9 | 9.66 | 305.6 | 6.76 | 95.3 | 452 | 542 | |
X60 | 13.58 | 323.9 | 9.71 | 350 | 6.93 | 95.3 | 452 | 542 | |
X60 | 12.84 | 323.9 | 9.71 | 394.5 | 6.91 | 95.3 | 452 | 542 | |
X60 | 12.13 | 323.9 | 9.91 | 433.4 | 7.31 | 95.3 | 452 | 542 | |
X60 | 11.92 | 323.9 | 9.74 | 466.7 | 7.02 | 95.3 | 452 | 542 | |
X60 | 11.91 | 323.9 | 9.79 | 488.7 | 6.99 | 95.3 | 452 | 542 | |
X60 | 11.99 | 323.9 | 9.79 | 500 | 6.99 | 95.3 | 452 | 542 | |
X60 | 11.3 | 323.9 | 9.74 | 527.8 | 7.14 | 95.3 | 452 | 542 | |
X60 | 14.6 | 508 | 14.6 | 500 | 10.35 | 97 | 478 | 600 | |
X60 | 13.4 | 508 | 14.3 | 500 | 10.3 | 97 | 478 | 600 | |
X60 | 15.8 | 508 | 14.8 | 500 | 9.7 | 97 | 478 | 600 | |
X46 | 9.4 | 76.2 | 2 | 75 | 1.4 | 16 | 391 | 458 | |
A25 | 5.45 | 76.2 | 2.04 | 75 | 1.44 | 16 | 260 | 309 | |
(Mok et al., 1991) [21] | X60 | 11.25 | 508 | 6.6 | 381 | 2.62 | 25.4 | 540 | 610.3 |
X60 | 8 | 508 | 6.35 | 900 | 3.43 | 25.4 | 540 | 610.3 | |
X60 | 11.8 | 508 | 6.35 | 900 | 2.16 | 25.4 | 540 | 610.3 | |
X60 | 8.4 | 508 | 6.35 | 1000 | 3.18 | 25.4 | 540 | 610.3 | |
X60 | 11.55 | 508 | 6.7 | 1016 | 2.66 | 25.4 | 540 | 610.3 | |
(Kim et al., 2008) [22] | X65 | 27.5 | 762 | 17.5 | 50 | 8.75 | 50 | 495 | 565 |
X65 | 24.3 | 762 | 17.5 | 100 | 8.75 | 50 | 495 | 565 | |
X65 | 21.8 | 762 | 17.5 | 200 | 8.75 | 50 | 495 | 565 | |
X65 | 19.8 | 762 | 17.5 | 300 | 8.75 | 50 | 495 | 565 | |
X65 | 16.5 | 762 | 17.5 | 600 | 8.75 | 50 | 495 | 565 | |
X65 | 15 | 762 | 17.5 | 900 | 8.75 | 50 | 495 | 565 | |
X65 | 24.11 | 762 | 17.5 | 200 | 4.2 | 50 | 474.1 | 556.6 | |
X65 | 21.76 | 762 | 17.5 | 200 | 8.9 | 50 | 474.1 | 556.6 | |
X65 | 17.15 | 762 | 17.5 | 200 | 13.1 | 50 | 474.1 | 556.6 | |
X65 | 24.3 | 762 | 17.5 | 100 | 8.4 | 50 | 474.1 | 556.6 | |
X65 | 19.8 | 762 | 17.5 | 300 | 8.5 | 50 | 474.1 | 556.6 | |
X65 | 23.42 | 762 | 17.5 | 200 | 8.4 | 100 | 474.1 | 556.6 | |
X65 | 22.64 | 762 | 17.5 | 200 | 9 | 200 | 474.1 | 556.6 | |
(Chen et al., 1998) [23] | 20F | 10.8 | 426 | 6.95 | 160 | 2.7 | 25 | 240 | 390 |
20F | 9.81 | 426 | 7 | 150 | 3.8 | 21 | 240 | 390 | |
20F | 7.85 | 426 | 7 | 150 | 5.2 | 25 | 240 | 390 | |
20 | 8.83 | 529 | 9 | 350 | 4.7 | 25 | 285 | 415 | |
20 | 15.7 | 529 | 9 | 160 | 4.7 | 25 | 285 | 415 | |
20 | 14.2 | 529 | 9 | 150 | 5.3 | 25 | 285 | 415 | |
X60 | 10.3 | 720 | 8 | 180 | 4.3 | 25 | 425 | 535 | |
X60 | 8.83 | 720 | 8 | 320 | 4.4 | 26 | 425 | 535 | |
X60 | 7.55 | 720 | 8 | 180 | 6.2 | 26 | 425 | 535 | |
(Shuai et al., 2017b) [24] | - | 15.36 | 304.8 | 6.35 | 26 | 4.95 | 20 | 351 | 543 |
- | 16.29 | 304.8 | 6.35 | 33 | 4.25 | 21 | 382 | 570 | |
- | 14.29 | 304.8 | 6.35 | 37 | 4.64 | 30 | 351 | 463 | |
- | 16.22 | 324 | 6.01 | 19.35 | 3.6 | 19 | 382 | 570 | |
- | 23.2 | 324 | 10.3 | 243 | 5.15 | 154.5 | 380 | 514 | |
- | 22 | 324 | 10.3 | 243 | 5.15 | 30.9 | 380 | 514 | |
- | 11.25 | 508 | 6.6 | 381 | 2.62 | 25.4 | 443.4 | 598.9 | |
- | 8 | 508 | 6.35 | 900 | 3.43 | 25.4 | 429.6 | 572.5 | |
- | 8.4 | 508 | 6.35 | 1000 | 3.18 | 25.4 | 434.8 | 572.5 | |
- | 11.55 | 508 | 6.7 | 1016 | 2.66 | 25.4 | 430 | 601 | |
- | 14.4 | 323.9 | 9.8 | 255.6 | 6.95 | 95.3 | 422.5 | 589.6 | |
- | 13.58 | 323.9 | 9.71 | 350 | 6.85 | 95.3 | 422.5 | 589.6 | |
- | 12.19 | 323.9 | 9.91 | 433.4 | 7.08 | 95.3 | 422.5 | 589.6 | |
(Mannucci and Demofonti, 2002) [25] | X100 | 15.35 | 1422.4 | 19.25 | 180 | 10.4 | 0.5 | 740 | 774 |
X100 | 20.12 | 1422.4 | 20.1 | 385 | 3.8 | 0.5 | 795 | 840 | |
X100 | 21.4 | 914.4 | 16.4 | 150 | 9 | 0.5 | 739 | 813 | |
X100 | 24.02 | 914.4 | 16.4 | 450 | 6 | 0.5 | 739 | 813 |
Number | PF | DNV RP-F101 | NN with Equation (8) | NN with Equation (9) | NN with Equation (10) | ||||
---|---|---|---|---|---|---|---|---|---|
Re (%) | Re (%) | Re (%) | Re (%) | ||||||
1 | 22.68 | 21.98 | −3.09 | 23.22 | +2.37 | 22.64 | −0.17 | 22.42 | −1.15 |
2 | 12.84 | 11.72 | −8.72 | 12.46 | −2.97 | 12.89 | +0.41 | 12.14 | −5.42 |
3 | 16.22 | 20.67 | +27.44 | 15.79 | −2.65 | 18.92 | +16.64 | 15.85 | −2.28 |
4 | 19.80 | 18.59 | −6.11 | 19.75 | −0.24 | 19.90 | +0.50 | 19.56 | −1.22 |
5 | 15.80 | 15.41 | −2.47 | 14.22 | −10.01 | 13.92 | −11.89 | 15.22 | −3.69 |
6 | 12.19 | 12.70 | +4.18 | 12.26 | +0.54 | 12.70 | +4.14 | 12.20 | +0.05 |
7 | 10.80 | 9.92 | +8.15 | 11.44 | +5.93 | 10.33 | −4.35 | 10.64 | −1.51 |
8 | 11.25 | 10.62 | +5.60 | 11.15 | −0.88 | 10.21 | −9.24 | 10.94 | −2.75 |
9 | 13.40 | 12.32 | +8.06 | 14.05 | +4.83 | 13.54 | +1.03 | 14.39 | +7.37 |
10 | 10.30 | 8.23 | +20.10 | 8.76 | −14.95 | 8.61 | −16.45 | 10.16 | −1.33 |
11 | 22.64 | 20.18 | +10.87 | 22.30 | −1.51 | 22.01 | −2.79 | 22.00 | −2.82 |
12 | 21.40 | 24.51 | +14.53 | 22.37 | +4.53 | 21.73 | +1.55 | 22.03 | +2.96 |
13 | 11.25 | 10.82 | +3.82 | 13.11 | +16.54 | 11.49 | +2.12 | 11.23 | −0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Meng, X. Prediction of Corroded Pipeline Failure Pressure Based on Empirical Knowledge and Machine Learning. Appl. Sci. 2025, 15, 5787. https://doi.org/10.3390/app15105787
Liu H, Meng X. Prediction of Corroded Pipeline Failure Pressure Based on Empirical Knowledge and Machine Learning. Applied Sciences. 2025; 15(10):5787. https://doi.org/10.3390/app15105787
Chicago/Turabian StyleLiu, Hongbo, and Xiangzhao Meng. 2025. "Prediction of Corroded Pipeline Failure Pressure Based on Empirical Knowledge and Machine Learning" Applied Sciences 15, no. 10: 5787. https://doi.org/10.3390/app15105787
APA StyleLiu, H., & Meng, X. (2025). Prediction of Corroded Pipeline Failure Pressure Based on Empirical Knowledge and Machine Learning. Applied Sciences, 15(10), 5787. https://doi.org/10.3390/app15105787