Simulation and Experimental Study on Thermal Characteristics of Linear Conjugate Internal Gear Pumps
Abstract
:1. Introduction
2. Model of Friction by Heat Produced by Internal Gear Pump
2.1. Source Analysis of Heat Generation in the Ring Gear-Housing Radial Tribological Pair
2.2. Source Analysis of Heat Generation in the Radial Friction Pair Between Gear Ring and Housing
2.3. Source Analysis of Heat Generation in the Friction Pair Between the Rotating Shaft System and Crescent Plate
2.4. Heat Generation Source Analysis of Axial End-Face Tribopair in Rotaing Shaft System
3. Simulation of Thermal Power Characteristics
3.1. Simulation Model
3.2. Simulation Results and Analysis
3.2.1. Simulation Analysis of Mechanical Losses Under Rated Operating Conditions
3.2.2. Volumetric Loss Analysis Under Rated Operating Conditions
3.2.3. Power Loss Analysis at Extreme High Speed
4. Experimental Verification
4.1. Experimental Scheme
4.2. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, Y.; Lu, H.; Zhu, Z.C.; Shi, Z.Y.; Xu, B.L. Performance reliability evaluation of high-pressure internal gear pump. Qual. Reliab. Eng. Int. 2024, 40, 3465–3486. [Google Scholar] [CrossRef]
- Chen, Z.B.; Lin, H.; Jian, L. Design and Analysis of Conjugated Straight-Line Internal Gear Pairs. Int. J. Precis. Eng. Manuf. 2021, 22, 1425–1440. [Google Scholar] [CrossRef]
- Liao, J.; Zheng, J.B.; Chen, Z.B. Research on the Fault Diagnosis Method of an Internal Gear Pump Based on a Convolutional Auto-Encoder and PSO-LSSVM. Sensors 2022, 22, 9841. [Google Scholar] [CrossRef]
- Liu, Y.Y.; An, K.; Liu, H.; Gong, J.G.; Wang, L.Q. Numerical and experimental studies on flow performances and hydraulic radial forces of an internal gear pump with a high pressure. Eng. Appl. Comput. Fluid Mech. 2019, 13, 1130–1143. [Google Scholar] [CrossRef]
- Ivanović, L.; Stojanovic, B.; Blagojevic, J.; Bogdanovic, G.; Marinković, A. Analysis of the Flow Rate and the Volumetric Efficiency of the Trochoidal Pump by Application of Taguchi Method. Available online: https://scidar.kg.ac.rs/handle/123456789/8762 (accessed on 10 April 2025).
- Nguyen, D.-D.; Dang, D.-V.; Nguyen, M.-K.; Trinh, V.-H. Effects of adjustable and control parameters on performance characteristics of multi-controlled variable displacement pump. Appl. Eng. Lett. 2025, 10, 14–24. [Google Scholar] [CrossRef]
- Ye, S.; Lin, Q.; Zheng, C.; Zhao, S.; Liu, H. Dynamic modeling and vibration response analysis of an internal gear pump. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2025, 8, 2823–2840. [Google Scholar] [CrossRef]
- Yang, C.; Yu, L.J.; Zhang, J.H.; Qian, J.Y. Cooling Performance Analysis of Outside Fins of the Closed Circuit Axial Piston Transmission. Machines 2021, 9, 17. [Google Scholar] [CrossRef]
- Wu, D.; Wang, S.; Shi, J. Thermal modeling of axial piston pump and application. In Proceedings of the 2015 International Conference on Fluid Power and Mechatronics (FPM), Harbin, China, 5–7 August 2015. [Google Scholar] [CrossRef]
- Li, K.; Lv, Z.; Lu, K.; Yu, P. Thermal-hydraulic Modeling and Simulation of the Hydraulic System Based on the Electro-Hydrostatic Actuator. In Proceedings of the 3rd International Symposium on Aircraft Airworthiness (ISAA), Toulouse, France, 19–21 November 2013; pp. 272–281. [Google Scholar]
- Li, D.; Dong, S.; Wang, J.; Li, Y. State-of-the-art and some considerations on thermal load analysis and thermal management for hydraulic system in MEA. J. Eng. 2018, 2018, 399–405. [Google Scholar] [CrossRef]
- Li, S.N.; Yang, P.; Zhao, R.; Liang, T.; Zhou, Z.Y. Theoretical and Experimental Research on Temperature Rise Mechanism of Oil in the Sealed Cavity of Intra-Vane Type Pump. Processes 2022, 10, 446. [Google Scholar] [CrossRef]
- Chang, L.; Li, Z.W.; Jia, W.N.; Li, S.; Ruan, J. Convective heat transfer of the Taylor flow in a two-dimensional piston pump. PLoS ONE 2022, 17, e0275897. [Google Scholar] [CrossRef]
- Yan, G.S.; Jin, Z.L.; Yang, M.K.; Yao, B. The Thermal Balance Temperature Field of the Electro-Hydraulic Servo Pump Control System. Energies 2021, 14, 1364. [Google Scholar] [CrossRef]
- Becker, K.M.; Kaye, J. Measurements of Diabatic Flow in an Annulus with an Inner Rotating Cylinder. J. Heat Transf. 1962, 84, 97–104. [Google Scholar] [CrossRef]
- Chao, Q.; Zhang, J.H.; Xu, B.; Huang, H.P.; Pan, M. A Review of High-Speed Electro-Hydrostatic Actuator Pumps in Aerospace Applications: Challenges and Solutions. J. Mech. Des. 2019, 141, 050801. [Google Scholar] [CrossRef]
- Liu, Y.S.; Li, D.L.; Tang, Z.Y.; Deng, Y.P.; Wu, D.F. Thermodynamic modeling, simulation and experiments of a water hydraulic piston pump in water hydraulic variable ballast system. Ocean Eng. 2017, 138, 35–44. [Google Scholar] [CrossRef]
- Kazama, T. Comparison of temperature measurements and thermal characteristics of hydraulic piston, vane, and gear pumps. Mech. Eng. J. 2015, 2, 14–00542. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.Y.; Chen, C.C.; Wang, D.Y.; Li, S.H. Oil film lubrication state analysis of piston pair in piston pump based on coupling characteristics of the fluid thermal structure. Eng. Fail. Anal. 2022, 140, 106521. [Google Scholar] [CrossRef]
- Li, C.-G.; Jiao, Z.-X. Thermal-hydraulic Modeling and Simulation of Piston Pump. Chin. J. Aeronaut. 2006, 19, 354–358. [Google Scholar] [CrossRef]
- Grandall, D.R. The Performance and Efficiency of Hydraulic Pumps and Motors. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2010. [Google Scholar]
- Iboshi, N.; Yamaguchi, A. Characteristics of a Slipper Bearing for Swash Plate Type Axial Piston Pumps and Motors: 1st Report, Theoretical Analysis. Bull. JSME 1982, 25, 1921–1930. [Google Scholar] [CrossRef]
- Dong, J.-C.; Cao, W.-B.; Yang, G.-L.; Chen, C.; Gao, W.-T. Static Analysis of Key Friction Pair for High-pressure Large-displacement Valve Plate Radial Piston Pump. Hydraul. Pneum. Seals 2018, 38, 11–14. [Google Scholar]
- Rituraj, R.; Vacca, A.; Rigosi, M. Modeling and validation of hydro-mechanical losses in pressure compensated external gear machines. Mech. Mach. Theory 2021, 161, 104310. [Google Scholar] [CrossRef]
- Dhar, S.; Vacca, A. A fluid structure interaction-EHD model of the lubricating gaps in external gear machines: Formulation and validation. Tribol. Int. 2013, 62, 78–90. [Google Scholar] [CrossRef]
- Zardin, B.; Natali, E.; Borghi, M. Evaluation of the Hydro-Mechanical Efficiency of External Gear Pumps. Energies 2019, 12, 2468. [Google Scholar] [CrossRef]
- Chai, H.Q.; Yang, G.L.; Wu, G.G.; Bai, G.X.; Cao, C.C. Analysis of straight conjugate internal gear pump through numerical modeling and experimental validation. PLoS ONE 2022, 17, e0270979. [Google Scholar] [CrossRef] [PubMed]
- Bouchehit, B.; Benyebka, B.S.; Mathieu, G. Static and dynamic performances of refrigerant-lubricated bearings. Tribol. Int. 2016, 96, 326–348. [Google Scholar] [CrossRef]
- Mucchi, E.; Giorgio, D.; Fernandez, D.R. Elastodynamic analysis of a gear pump. Part I: Pressure distribution and gear eccentricity. Mech. Syst. Signal Process. 2010, 24, 2160–2179. [Google Scholar] [CrossRef]
Physical Parameter | Symbol | Value | Unit |
---|---|---|---|
Hydraulic oil kinematic viscosity | μ | 43 | mm2/s |
Gear tooth root radius | rf1 | 21.5 | mm |
Ring gear tooth root radius | rf2 | 38 | mm |
Number of contacting teeth (gear-crescent plate) | z1 | 4 | - |
Number of contacting teeth (ring gear-crescent plate) | z2 | 7 | - |
Gear pair thickness | B | 27 | mm |
Gear tip circle radius | ra1 | 29.8 | mm |
Ring gear tip circle radius | ra2 | 30.38 | mm |
Ring gear outer wall radius | R | 46 | mm |
Gear shaft radius | r | 14 | mm |
Gear tip-crescent plate clearance | δ1 | 70 | μm |
Ring gear tip-crescent plate clearance | δ2 | 70 | μm |
Ring gear-housing radial clearance | δ3 | 46 | μm |
Gear shaft-sliding vane clearance | δ4 | 64 | μm |
Gear-housing end face clearance | δ5 | 20 | μm |
Gear shaft-sheet contact length | l | 28 | mm |
Ring gear-housing leakage clearance length | L | 144.44 | mm |
Sensor Type | Range | Accuracy | Manufacturer | Illustration Ref. |
---|---|---|---|---|
Speed-Torque sensor | 0–200 N·m | ±0.2% FS | ZEMIC (Beijing China) | |
Temperature sensor | 0–100 °C | ±0.15 °C | Matsushima (Kitakyushu Japan) | |
Flow sensor | 5–150 L/min | ±0.5% of reading | Hydrotechnik (Limbaugh Germany) | |
Oil temperature sensor | −50–200 °C | ±0.2% FS | Hydrotechnik (Limbaugh Germany) | |
Pressure sensor | 0–250 bar | ±0.2% FS | Hydrotechnik (Limbaugh Germany) | |
Thermal imager | −20–350 °C | ±2% FS | Hikvision (Beijing China) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Yao, C.; Chen, J.; Chen, G.; Liu, K.; Zhao, H.; Zhang, T.; Wang, F. Simulation and Experimental Study on Thermal Characteristics of Linear Conjugate Internal Gear Pumps. Appl. Sci. 2025, 15, 5728. https://doi.org/10.3390/app15105728
Yu B, Yao C, Chen J, Chen G, Liu K, Zhao H, Zhang T, Wang F. Simulation and Experimental Study on Thermal Characteristics of Linear Conjugate Internal Gear Pumps. Applied Sciences. 2025; 15(10):5728. https://doi.org/10.3390/app15105728
Chicago/Turabian StyleYu, Bo, Chong Yao, Jianghui Chen, Gexin Chen, Keyi Liu, Huibing Zhao, Tiangui Zhang, and Fei Wang. 2025. "Simulation and Experimental Study on Thermal Characteristics of Linear Conjugate Internal Gear Pumps" Applied Sciences 15, no. 10: 5728. https://doi.org/10.3390/app15105728
APA StyleYu, B., Yao, C., Chen, J., Chen, G., Liu, K., Zhao, H., Zhang, T., & Wang, F. (2025). Simulation and Experimental Study on Thermal Characteristics of Linear Conjugate Internal Gear Pumps. Applied Sciences, 15(10), 5728. https://doi.org/10.3390/app15105728