Vehicle Pose Estimation Method Based on Maximum Correntropy Square Root Unscented Kalman Filter
Abstract
:1. Introduction
2. Problem Description and Existing Methods
2.1. SLAM Problem Description
2.2. Square Root Unscented Kalman Filter SLAM
3. The Proposed Algorithm
3.1. Maximum Correntropy Criterion
3.2. The Proposed MCSRUKF-SLAM Algorithm
Algorithm 1: MCSRUKF-SLAM |
1: Initialize: , S0 |
2: for k = 1: n; 3: Generate sigma points using and Sk−1 by (9); 4: Obtain the mean and covariance of the one step predicted state Sk|k−1 by (10)–(13); 5: Calculate sigma points using and Sk|k−1 by (14); 6: Compute the mean , the covariance matrix and the cross-covariance matrix of the predicted measurement by (15)–(19); 7: Obtain the pseudo measurement matrix Hk by (25); 8: Obtain Rk by (26); |
9: Calculate Lk and Kk by (49) and (50); 10: Calculate xk and Sk by (46), (51), and (52); |
11: end. |
4. Material and Methods
4.1. System Model
4.2. Simulation Environment
5. Results
5.1. Simulation Results and Analysis
5.1.1. The Accuracy Comparison of Different Algorithms
- Gaussian noise
- Gaussian mixture noise;
- Colored noise
5.1.2. The Stability Analysis of Different Algorithms
5.1.3. The Running Time Comparison of Different Algorithms
5.2. Experimental Results and Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nam, D.V.; Danh, P.T.; Park, C.H.; Kim, G.W. Fusion consistency for industrial robot navigation: An integrated SLAM framework with multiple 2D LiDAR-visual-inertial sensors. Comput. Electr. Eng. 2024, 120, 109607. [Google Scholar] [CrossRef]
- Ding, S.S.; Zhang, T.D.; Lei, M.; Chai, H.R.; Jia, F.X. Robust visual-based localization and mapping for underwater vehicles: A survey. Ocean. Eng. 2024, 312, 119274. [Google Scholar] [CrossRef]
- Wang, Z.H.; Chen, H.Y.; Zhang, S.W.; Lou, Y.J. Active View Planning for Visual SLAM in Outdoor Environments Based on Continuous Information Modeling. IEEE ASME Trans. Mechatron. 2024, 29, 237–248. [Google Scholar] [CrossRef]
- Zheng, S.R.; Wang, J.L.; Rizos, C.; Ding, W.D.; El-Mowafy, A. Simultaneous Localization and Mapping (SLAM) for Autonomous Driving: Concept and Analysis. Remote Sens. 2023, 15, 1156. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Z.; Yun, J.T.; Xu, M.M.; Liu, Y.; Sun, Y.; Hu, J.; Li, F.Z. Semantic Loopback Detection Method Based on Instance Segmentation and Visual SLAM in Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2023, 25, 3118–3127. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, L.; Fei, S.M. Design of Dual-LiDAR High Precision Natural Navigation System. IEEE Sensors 2022, 22, 7231–7239. [Google Scholar] [CrossRef]
- Chen, J.Y.; Wang, H.; Hu, M.H.; Suganthan, P.N. Versatile LiDAR-Inertial Odometry with SE(2) Constraints for Ground Vehicles. IEEE Robot. Autom. 2023, 8, 3486–3493. [Google Scholar] [CrossRef]
- Zhuang, L.C.; Zhong, X.R.; Xu, L.J.; Tian, C.B.; Yu, W.S. Visual SLAM for Unmanned Aerial Vehicles: Localization and Perception. Sensors 2024, 24, 2980. [Google Scholar] [CrossRef]
- Sheng, X.D.; Mao, S.J.; Yan, Y.C.; Yang, X.K. Review on SLAM algorithms for Augmented Reality. Displays 2024, 84, 102806. [Google Scholar] [CrossRef]
- Pollmann, K.; Loh, W.; Fronemann, N.; Ziegler, D. Entertainment vs. manipulation: Personalized human-robot interaction between user experience and ethical design. Technol. Forecast. Soc. Change 2023, 189, 122376. [Google Scholar] [CrossRef]
- Chen, W.F.; Shang, G.T.; Ji, A.H.; Zhou, C.J.; Wang, Y.X.; Xu, C.H.; Li, Z.X.; Hu, K. An Overview on Visual SLAM: From Tradition to Semantic. Remote Sens. 2023, 14, 3010. [Google Scholar] [CrossRef]
- Zuo, C.L.; Feng, Z.; Xiao, X.H. CMDS-SLAM: Real-time efficient centralized multi-robot dense surfel SLAM. Meas. Sci. Technol. 2024, 35, 116303. [Google Scholar] [CrossRef]
- Ullah, I.; Su, X.; Zhang, X.W.; Choi, D.M.; Seet, G. Simultaneous Localization and Mapping Based on Kalman Filter and Extended Kalman Filter. Wirel. Commun. Mob. Comput. 2020, 2020, 2138643. [Google Scholar] [CrossRef]
- Dai, J.; Li, D.F.; Li, Y.Q.; Zhao, J.W.; Li, W.B.; Liu, G. Mobile Robot Localization and Mapping Algorithm Based on the Fusion of Image and Laser Point Cloud. Sensors 2022, 22, 4114. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Liu, X.H.; Kang, Y.; Ge, S.S. Anomaly Resilient Relative Pose Estimation for Multiple Nonholonomic Mobile Robot Systems. IEEE Sys. J. 2022, 16, 659–670. [Google Scholar] [CrossRef]
- Zhu, W.P.; Cheng, X.L. Indoor Localization Method of Mobile Educational Robot Based on Visual Sensor. Internet Technol. 2023, 24, 205–215. [Google Scholar]
- Chen, W.; Jiang, S.; Cao, J.R.; Sun, R.S. An adaptive EKF-SLAM algorithm for cooperative navigation of multi-aircrafts. IET Control Theory Appl. 2024, 18, 2823–2829. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, D.Q.; Xu, B.Y. A multi-innovation with forgetting factor based EKF-SLAM method for mobile robots. Assem. Autom. 2021, 41, 71–78. [Google Scholar] [CrossRef]
- Mailka, H.; Abouzahir, M.; Ramzi, M. An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles. Multimed. Tools Appl. 2024, 83, 56183–56206. [Google Scholar] [CrossRef]
- Bahraini, M.S. On the Efficiency of SLAM Using Adaptive Unscented Kalman Filter. IJST-T. Mech. Eng. 2020, 44, 727–735. [Google Scholar] [CrossRef]
- Yuan, S.A.; Wu, J.A.; Luan, F.J.; Zhang, L.L.; Lv, J.Q. Improvement of Strong Tracking UKF-SLAM Approach using Three-position Ultrasonic Detection. Rob. Autom. Syst. 2023, 159, 104305. [Google Scholar] [CrossRef]
- Cao, Y.B.; Deng, Z.Y.; Luo, Z.H.; Fan, J.W. A Multi-Sensor Deep Fusion SLAM Algorithm Based on TSDF Map. IEEE Access 2024, 12, 154535–154545. [Google Scholar] [CrossRef]
- Havangi, R. Robust SLAM: SLAM base on H∞ square root unscented Kalman filter. Nonlinear Dyn. 2016, 83, 767–779. [Google Scholar] [CrossRef]
- Dutt, R.; Acharyya, A. Low-Complexity Square-Root Unscented Kalman Filter Design Methodology. Circ. Syst. Signal Process. 2023, 42, 6900–6928. [Google Scholar] [CrossRef]
- Tang, M.; Chen, Z.; Yin, F.L. SLAM with Improved Schmidt Orthogonal Unscented Kalman Filter. Int. J. Control Autom. Syst. 2022, 20, 1327–1335. [Google Scholar] [CrossRef]
- Tang, M.; Chen, Z.; Yin, F.L. An Improved Adaptive Unscented FastSLAM with Genetic Resampling. Int. J. Control Autom. Syst. 2021, 19, 1677–1690. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Z.Y.; Wang, L. A UPF-PS SLAM Algorithm for Indoor Mobile Robot with NonGaussian Detection Model. IEEE-ASME Trans. Mechatron. 2022, 27, 1–11. [Google Scholar] [CrossRef]
- Shi, W.L.; Li, Y.S.; Wang, Y.Y. Noise-Free Maximum Correntropy Criterion Algorithm in Non-Gaussian Environment. IEEE Trans. Circuits Syst. Express Briefs 2020, 67, 8704943. [Google Scholar] [CrossRef]
- Liu, X.; Ren, Z.G.; Lyu, H.Q.; Jiang, Z.H.; Ren, P.J.; Chen, B.D. Linear and Nonlinear Regression-Based Maximum Correntropy Extended Kalman Filtering. IEEE Trans. Syst. Man. Cybern. Syst. 2021, 51, 8736038. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Li, Y.; Ma, T.; Cong, Z.; Zhang, W.J. Bathymetric Particle Filter SLAM With Graph-Based Trajectory Update Method. IEEE Access 2021, 9, 85464–85475. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, X.Y. Research on SLAM Road Sign Observation Based on Particle Filter. Comput. Intell. Neurosci. 2022, 2022, 4478978. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Zhou, W.D.; Tong, S. Improved maximum correntropy cubature Kalman and information filters with application to target tracking under non-Gaussian noise. Int. J. Adapt. Control Signal Process. 2024, 38, 1199–1221. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Song, X.M.; Yan, X.H. A novel fusion maximum correntropy Kalman/UFIR filter for state estimation with uncertain non-Gaussian noise statistics. Meas. J. Int. Meas. Confed. 2023, 220, 113339. [Google Scholar] [CrossRef]
- Qiao, S.F.; Fan, Y.S.; Wang, G.F.; Mu, D.D.; He, Z.P. Maximum correntropy criterion variational Bayesian adaptive Kalman filter based on strong tracking with unknown noise covariances. J. Franklin Inst. 2023, 360, 6515–6536. [Google Scholar] [CrossRef]
- Guo, H.J.; Liu, H.Y.; Zhou, Y.; Hu, X.X. Robust State Estimation via Maximum Correntropy EKF on Matrix Lie Groups with Application to Low-Cost INS/GPS-Integrated Navigation System. IEEE Sensors J. 2023, 23, 9467–9479. [Google Scholar] [CrossRef]
- Qi, D.L.; Feng, J.A.; Ni, X.D.; Wang, L. Maximum Correntropy Extended Kalman Filter for Vehicle State Observation. Int. J. Automot. Technol. 2023, 24, 377–388. [Google Scholar] [CrossRef]
- Qi, D.L.; Feng, J.A.; Wan, W.K.; Song, B. A novel maximum correntropy adaptive extended Kalman filter for vehicle state estimation under non-Gaussian noise. Meas. Sci. Technol. 2023, 34, 025114. [Google Scholar] [CrossRef]
- Wang, G.Q.; Li, N.; Zhang, Y.G. Maximum correntropy unscented Kalman and information filters for non-Gaussian measurement noise. J. Franklin Inst. 2017, 354, 8659–8677. [Google Scholar] [CrossRef]
- Wang, G.Q.; Zhang, Y.G.; Wang, X.D. Iterated maximum correntropy unscented Kalman filters for non-Gaussian systems. Signal Process. 2019, 163, 87–94. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Zhou, Y.Q.; Zhao, Z.J. Maximum Correntropy Criterion-Based UKF for Loosely Coupling INS and UWB in Indoor Localization. CMES Comput. Model. Eng. Sci. 2024, 139, 2673–2703. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, J.A.; Qi, D.L.; Liu, Y.; Shao, W.P.; Qi, J.A.; Lin, Y.A. Joint Estimation of Vehicle State and Parameter Based on Maximum Correntropy Adaptive Unscented Kalman Filter. Int. J. Automot. Technol. 2023, 24, 1553–1566. [Google Scholar] [CrossRef]
- Hajimolahoseini, H.; Amirfattahi, R.; Gazor, S.; Soltanian-Zadeh, H. Robust Estimation and Tracking of Pitch Period Using an Efficient Bayesian Filter. IEEE ACM Trans. Audio Speech Lang. Process. 2016, 24, 1219–1229. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B.D.; Xu, B.; Wu, Z.Z.; Honeine, P. Maximum Correntropy Unscented Filter. Int. J. Syst. Sci. 2017, 48, 1607–1615. [Google Scholar] [CrossRef]
- Liu, Q.; Davoine, F.; Yang, J.; Cui, Y.; Jin, Z.; Han, F. A Fast and Accurate Matrix Completion Method Based on QR Decomposition and L2,1-Norm Minimization. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.H.; Mu, D.J.; Gao, Z.H.; Zhang, J.H.; Li, G. Stochastic Stability of the Improved Maximum Correntropy Kalman Filter Against Non-Gaussian Noises. Int. J. Control Autom. Syst. 2024, 22, 731–743. [Google Scholar] [CrossRef]
- Jin, Y.Z.; Mu, L.X.; Feng, N.; Hei, X.H.; Li, Y.K.; Guo, X.; Ye, X.; Li, J.J. Maximum Correntropy-Based Extended Particle Filter for Nonlinear System. IEEE Trans. Circuits Syst. Express Briefs 2023, 70, 2520–2524. [Google Scholar] [CrossRef]
- Debasis, K.; Swagata, N.; Rhythm, G. On Weighted Least Squares Estimators of Parameters of a Chirp Model. Circ. Syst Signal Process. 2023, 42, 493–521. [Google Scholar]
- Wang, G.; Ouyang, L.Q.; Tong, L.L.; Fang, Q.; Peng, B. A Recursive Least P-Order Algorithm Based on M-Estimation in a Non-Gaussian Environment. IEEE Trans. Circuits Syst. Express Briefs 2023, 70, 2979–2983. [Google Scholar] [CrossRef]
- Chen, B.D.; Liu, X.; Zhao, H.Q.; Principe, J.C. Maximum correntropy Kalman filter. Automatica 2017, 76, 70–77. [Google Scholar] [CrossRef]
- Chang, G.B.; Liu, M. M-estimator-based robust Kalman filter for systems with process modeling errors and rank deficient measurement models. Nonlinear Dyn. 2015, 80, 1431–1449. [Google Scholar] [CrossRef]
- Chen, B.D.; Xing, L.; Zhao, H.Q.; Zheng, N.N.; Principe, J.C. Generalized Correntropy for Robust Adaptive Filtering. IEEE Trans. Signal Process. 2016, 64, 3376–3387. [Google Scholar] [CrossRef]
- Available online: http://www-personal.acfr.usyd.edu.au/nebot/dataset (accessed on 5 June 2023).
Parameters | Symbols | Value |
---|---|---|
Movement speed (m/s) | V | 8 |
Maximum observation distance (m) | mx | 30 |
Wheel-steering angle (rad) | Ω | 30 |
Maximum turning speed of wheels (rad/s) | Vt | 20 |
Control frequency (Hz) | fc | 40 |
Observed frequency (Hz) | fb | 5 |
Adjusting weights | δ | 8 |
Damping parameters | μ | 0.001 |
Robot wheelbase (m) | L | 4 |
Algorithms | ARMSE (m) | Aerrorx (m) | Aerrory (m) | Aerrorϕ (rad) |
---|---|---|---|---|
EKF-SLAM [13] | 1.0039 | 0.4128 | 0.6310 | 0.0168 |
UKF-SLAM [20] | 0.8756 | 0.2956 | 0.4927 | 0.0138 |
SRUKF-SLAM [23] | 0.8348 | 0.2549 | 0.4776 | 0.0136 |
MCUKF-SLAM [39] | 0.8023 | 0.2335 | 0.4511 | 0.0129 |
The proposed MCSRUKF-SLAM | 0.4737 | 0.1905 | 0.2708 | 0.0079 |
Algorithms | ARMSE (m) | Aerrorx (m) | Aerrory (m) | Aerrorϕ (rad) |
---|---|---|---|---|
EKF-SLAM [13] | 1.3783 | 0.6039 | 0.8841 | 0.0171 |
UKF-SLAM [20] | 1.1340 | 0.4336 | 0.6119 | 0.0138 |
SRUKF-SLAM [23] | 1.1091 | 0.4257 | 0.6005 | 0.0137 |
MCUKF-SLAM [39] | 1.0767 | 0.4018 | 0.5903 | 0.0135 |
The proposed MCSRUKF-SLAM | 0.6851 | 0.2734 | 0.3849 | 0.0123 |
Algorithms | ARMSE (8 m/s) | ARMSE (15 m/s) | ARMSE (30 m/s) | Error growth rate (8→30 m/s) |
---|---|---|---|---|
EKF-SLAM [13] | 0.9858 | 1.8040 | 3.1131 | 216% |
UKF-SLAM [20] | 0.8607 | 1.3159 | 2.3353 | 171% |
SRUKF-SLAM [23] | 0.8208 | 1.0231 | 1.4518 | 77% |
MCUKF-SLAM [39] | 0.7891 | 1.1233 | 1.8623 | 136% |
The proposed MCSRUKF-SLAM | 0.4655 | 0.5633 | 0.8039 | 73% |
Algorithms | Divergence Count per 100 Runs (8 m/s) | Divergence Count per 100 Runs (15 m/s) | Divergence Count per 100 Runs (30 m/s) |
---|---|---|---|
EKF-SLAM [13] | 3 | 13 | 25 |
UKF-SLAM [20] | 0 | 6 | 13 |
SRUKF-SLAM [23] | 0 | 0 | 0 |
MCUKF-SLAM [39] | 0 | 4 | 8 |
The proposed MCSRUKF-SLAM | 0 | 0 | 0 |
Algorithms | Total Running Time (s) | Single Step Time (s) |
---|---|---|
EKF-SLAM [13] | 223.201 | 0.197 |
UKF-SLAM [20] | 244.718 | 0.216 |
SRUKF-SLAM [23] | 235.664 | 0.208 |
MCUKF-SLAM [39] | 319.506 | 0.282 |
The proposed MCSRUKF-SLAM | 311.575 | 0.275 |
Algorithms | Total Running Time (s) | Single Step Time (s) |
---|---|---|
EKF-SLAM [13] | 232.265 | 0.206 |
UKF-SLAM [20] | 250.393 | 0.222 |
SRUKF-SLAM [23] | 240.196 | 0.215 |
MCUKF-SLAM [39] | 329.703 | 0.293 |
The proposed MCSRUKF-SLAM | 324.038 | 0.285 |
Algorithm | EKF-SLAM | UKF-SLAM | SRUKF-SLAM | MCUKF-SLAM | The Proposed MCSRUKF-SLAM |
---|---|---|---|---|---|
ARMSE(m) | 0.71 | 0.558 | 0.537 | 0.493 | 0.284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Guo, Y. Vehicle Pose Estimation Method Based on Maximum Correntropy Square Root Unscented Kalman Filter. Appl. Sci. 2025, 15, 5662. https://doi.org/10.3390/app15105662
Liu S, Guo Y. Vehicle Pose Estimation Method Based on Maximum Correntropy Square Root Unscented Kalman Filter. Applied Sciences. 2025; 15(10):5662. https://doi.org/10.3390/app15105662
Chicago/Turabian StyleLiu, Shuyu, and Ying Guo. 2025. "Vehicle Pose Estimation Method Based on Maximum Correntropy Square Root Unscented Kalman Filter" Applied Sciences 15, no. 10: 5662. https://doi.org/10.3390/app15105662
APA StyleLiu, S., & Guo, Y. (2025). Vehicle Pose Estimation Method Based on Maximum Correntropy Square Root Unscented Kalman Filter. Applied Sciences, 15(10), 5662. https://doi.org/10.3390/app15105662