Flexural Buckling Failure of Rock Slopes: A Review of Influencing Factors and Analysis Methods
Abstract
:1. Introduction
2. Analysis of Previous Studies on Flexural Buckling of Dip Slopes
2.1. Bibliometric Analysis
2.2. Brief Historical Retrospect of the Buckling Failure Phenomenon in the Literature
3. Deformation Process of Flexural Buckling Failure and Its Influencing Factors
3.1. Deformation Process of Flexural Buckling Failure
3.2. Factors Affecting the Deformation Process of Flexural Buckling
3.2.1. Intrinsic Factors
3.2.2. Triggering Factors
4. Analysis Methods for Flexural Buckling Failure
4.1. Physical Model Tests
4.2. Analytical Methods
4.3. Numerical Simulations
5. Concluding Remarks and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Symbols
l | Slope length |
lcr | Critical slope length |
lb | Length of buckling segment |
lbcr | Critical buckling length |
ld | Length of driving segment |
lw | Slope length subjected to hydrostatic pressure |
Dcr | Critical buckling depth |
Pcr | Critical buckling load |
Ucr | Critical sliding displacement |
n | Number of rock layers (slabs) |
h | Thickness of rock layer (slab) |
hi | Thickness of the i-th rock layer (slab) |
b | Width of rock slab |
γ | Unit weight of rock layer (slab) |
γi | Unit weight of the i-th rock layer (slab) |
γw | Unit weight of water |
α | Dip angle of rock layer (slab) |
ϕ | Internal friction angle of basal sliding surface |
c | Cohesion of basal sliding surface |
ϕn | Internal friction angle between the n-th and the underlying stable rock slab |
cn | Cohesion between the n-th and the underlying stable rock slab |
E | Elastic modulus of intact rock |
Ei | Elastic modulus of intact rock in the i-th layer |
Et | Tangent modulus of intact rock |
E(t) | Deformation modulus of rock mass at time t |
μ | Poisson’s ratio |
ψt | Modulus reduction coefficient |
D | Bending stiffness of rock slab of unit width |
βs | Dynamic amplification coefficient |
Ks | Horizontal seismic coefficient |
r | Intensity of residual driving force along the axial direction of rock layer |
q | Intensity of top loading along the axial direction of rock layer |
Q | Top loading along the axial direction of rock layer |
y | Deflection curve equation of rock layer |
y′ | Derivative of deflection curve equation |
I | Moment of inertia |
N | Normal force |
M | Bending moment |
R | Residual driving force |
References
- Hu, X.Q.; Cruden, D.M. Buckling deformation in the high wood pass, Alberta, Canada. Can. Geotech. J. 1993, 30, 276–286. [Google Scholar] [CrossRef]
- Huang, R.Q. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chin. J. Rock Mech. Eng. 2007, 26, 433–454. [Google Scholar]
- Zhao, S.Y.; Chigira, M.; Wu, X.Y. Buckling deformations at the 2017 Xinmo landslide site and nearby slopes, Maoxian, Sichuan, China. Eng. Geol. 2018, 246, 187–197. [Google Scholar] [CrossRef]
- Yang, C.M.; Kang, K.H.; Yang, S.H.; Li, K.W.; Wang, H.J.; Lee, Y.T.; Lin, K.K.; Pan, Y.W.; Liao, J.J. Large paleo-rockslide induced by buckling failure at Jiasian in Southern Taiwan. Landslides 2020, 17, 1319–1335. [Google Scholar] [CrossRef]
- Ghasemi, M.; Corkum, A.G.; Gorrell, G.A. Ground surface rock buckling: Analysis of collected cases and failure mechanisms. Bull. Eng. Geol. Environ. 2021, 80, 4255–4276. [Google Scholar] [CrossRef]
- Makedon, T.; Chatzigogos, N. Failure mechanism of overhanging slopes in sedimentary rocks with dissimilar mechanical properties. Bull. Eng. Geol. Environ. 2012, 71, 703–708. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, J.; Du, Y.L.; Gao, Y.; Li, J.Z. A laboratory and field-monitoring experiment on the ability of anti-slide piles to prevent buckling failures in bedding slopes. Environ. Earth Sci. 2021, 80, 44. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, J.; Gao, H.S.S. Analysis of the buckling failure of bedding slope based on monitoring data—A model test study. Geomech. Eng. 2022, 28, 335–346. [Google Scholar] [CrossRef]
- Pei, Z.W.; Zhang, Y.J.; Nian, T.K.; Song, X.L.; Zhao, W. Performance investigation of micropile groups in stabilizing unstable talus slopes via centrifuge model tests. Can. Geotech. J. 2023, 60, 351–365. [Google Scholar] [CrossRef]
- Pei, Z.W.; Zhang, Y.J.; Nian, T.K.; Xiao, S.G.; Liu, H.S. Cross-Scale Analysis on the Working Performance of Micropile Group and Talus Slope System. Sustainability 2023, 15, 8154. [Google Scholar] [CrossRef]
- Onoue, A.; Wakai, A.; Ugai, K.; Higuchi, K.H.; Fukutake, K.Y.; Hotta, H.Y.; Kuroda, S.C.; Nagai, H. Slope failures at Yokowatashi and Nagaoka College of technology due to the 2004 Niigata-ken Chuetsu earthquake and their analytical considerations. Soils Found. 2006, 46, 751–764. [Google Scholar] [CrossRef]
- Numada, M.; Konagai, K. Proposal of evaluation approach of slide surface friction coefficient of landslide that uses buckling theory. Seisan Kenkyu 2010, 61, 1021–1024. [Google Scholar] [CrossRef]
- Chigira, M.; Tsou, C.Y.; Higaki, D.; Amatya, S.C. A series of rockslides and gravitational slope deformations aligned along the Kali Gandaki across the Nepal Himalaya. Geomorphology 2022, 400, 108098. [Google Scholar] [CrossRef]
- Li, Y.Y.; Feng, X.Y.; Yao, A.J.; Lin, S.; Wang, R.; Guo, M.Z. A massive ancient river-damming landslide triggered by buckling failure in the upper Jinsha River, SE Tibetan Plateau. Bull. Eng. Geol. Environ. 2021, 80, 5391–5403. [Google Scholar] [CrossRef]
- Li, Y.Y.; Feng, X.Y.; Yao, A.J.; Zhang, Z.H.; Li, K.; Wang, Q.S.; Song, S.Y. Progressive evolution and failure behavior of a Holocene river-damming landslide in the SE Tibetan plateau, China. Landslides 2022, 19, 1069–1086. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Guo, Y.C.; Dai, F.C.; Zhao, S.Y.; Yao, A.J. Analysis of buckling failure process for the Xiaguiwa landslide in southeastern Tibetan Plateau. Q. J. Eng. Geol. Hydrogeol. 2022, 55, 3. [Google Scholar] [CrossRef]
- Kuttėr, H.K. Mechanisms of Slope Failure Other Than Pure Sliding. In Rock Mechanics; Müller, L., Ed.; Springer: Vienna, AT, USA, 1972; pp. 213–220. [Google Scholar] [CrossRef]
- Cavers, D.S. Simple methods to analyze bulking of rock slops. Rock Mech. 1981, 14, 87–104. [Google Scholar] [CrossRef]
- Sun, G.Z.; Zhang, W.B. A Commonly-Sighted Rock Mass Structure—Slab-Rent Structure and Its Mechanical Model. Chin. J. Geol. 1985, 20, 275–282. [Google Scholar]
- Ni, G.R.; Ye, M.X. Mechanicai Analysis of Rock Mass with the “Plate Fracture” Structure. Chin. J. Geotech. Eng. 1987, 9, 99–108. [Google Scholar]
- Sun, G.Z. Rock Mass Structure Mechanics; Science Press: Beijing, China, 1988; pp. 355–362. [Google Scholar]
- Choquet, P.; Hadjigeorgiou, J.; Manini, P.; Mathieu, E.; Soukatchoff, V.; Paquette, Y. Analysis of the strata buckling mechanism at the Grand-Baume coal mine, France. Int. J. Surf. Min. Reclam. Environ. 1993, 7, 29–35. [Google Scholar] [CrossRef]
- Li, S.S.; Ren, G.M.; Zou, S.S. Mechanical analysis of instability mechanism of dip slope in bedded rock mass. J. Geol. Hazards Environ. Preserv. 1995, 6, 24–29. [Google Scholar]
- Adhikary, D.P.; Mühlhaus, H.B.; Dyskin, A.V. A numerical study of flexural buckling of foliated rock slopes. Int. J. Numer. Anal. Met. 2001, 25, 871–884. [Google Scholar] [CrossRef]
- Tommasi, P.; Campedel, P.; Consorti, C.; Ribacchi, R. A discontinuous approach to the numerical modelling of rock avalanches. Rock Mech. Rock Eng. 2008, 41, 37–58. [Google Scholar] [CrossRef]
- Pereira, L.C.; Lana, M.S. Stress–strain analysis of buckling failure in phyllite slopes. Geotech. Geol. Eng. 2013, 31, 297–314. [Google Scholar] [CrossRef]
- Du, Y.Q.; Ren, G.M.; Du, F.; Zhu, S.S.; Yu, T.B. Physical Simulation of Dip slope Bulking Deformation and Its Influencing Factor Sensitivity Analysis. J. Sichuan Univ. Sci. Eng. 2014, 27, 68–71. [Google Scholar]
- Silva, C.; Lana, M.S. Numerical modeling of buckling failure in a mine slope. Rev. Esc. Minas. 2014, 67, 81–86. [Google Scholar] [CrossRef]
- Tang, M.G.; Ma, X.; Zhang, T.T.; Huang, R.Q.; Li, J.Q. Early Recognition and Mechanism of Creep-Buckling of Bedding Slope. J. Eng. Geol. 2016, 24, 442–450. [Google Scholar] [CrossRef]
- Lo, C.M.; Weng, M.C. Identification of deformation and failure characteristics in cataclinal slopes using physical modeling. Landslides 2017, 14, 499–515. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Y.; Yin, K.L.; Wang, Y.; Shi, X.G.; Catani, F.; Ahmed, B. Landslide Characterization Applying Sentinel-1 Images and InSAR Technique: The Muyubao Landslide in the Three Gorges Reservoir Area, China. Remote Sens. 2020, 12, 3385. [Google Scholar] [CrossRef]
- Wang, Q.S.; Zhang, R.T.; Zheng, H. Buckling failure analysis and numerical manifold method simulation for Malvern Hills slope. Rock Soil Mech. 2022, 43, 1951–1960. [Google Scholar] [CrossRef]
- Miao, C.; Zhang, Y.; Li, Q.K.; Yi, J.S. The deformation mechanism analysis of gently inclined and consequent sliding-buckling rock landslides based on PFC2D. Drilling Eng. 2023, 50, 11–17. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Y.; Zhang, Y.J.; Lian, Z.P.; Pei, L.Z.; Liu, Y.L. GIS and cellular automata based slope rainwater movement process model and its application. Sci. Rep. 2024, 14, 9750. [Google Scholar] [CrossRef] [PubMed]
- Weng, M.C.; Chen, T.C.; Tsai, S.J. Modeling scale effects on dip slope deformation by centrifuge model tests and the discrete element method. Landslides 2017, 14, 981–993. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Nian, T.K.; Guo, X.S.; Chen, G.Q.; Zheng, L. Modelling the flexural buckling failure of stratified rock slopes based on the multilayer beam model. J. Mt. Sci. 2019, 16, 1170–1183. [Google Scholar] [CrossRef]
- Shi, J.L.; Zhang, Y.J.; Fan, N.; Tan, J.M.; Pei, L.Z.; Ye, R.Q.; Liu, L. Research Progress on the Instability Mechanisms and Stability Evaluation Method of Buckling Landslides. South China Geol. 2025, 41, 38–50. [Google Scholar]
- Lo, C.M.; Feng, Z.Y. Deformation characteristics of slate slopes associated with morphology and creep. Eng. Geol. 2014, 178, 132–154. [Google Scholar] [CrossRef]
- Yan, M.; Chen, J.P.; Huang, R.Q.; Zhang, Z.Y.; Wang, S.T. Engineering geological analysis on intermediate state before slide-bending failure for rock slope. Water Resour. Hydropower Eng. 2005, 36, 41–44. [Google Scholar]
- Jin, L.L.; Ju, G.H.; Chen, Z.F.; Xiao, Q.F.; Fu, W.X.; Ye, F.; Wei, Y.F. An analytical solution to predict slip-buckling failure of bedding rock slopes under the influence of top loading and earthquakes: Case studies of Hejia landslide and Tangjiashan landslide. Landslides 2024, 21, 152–169. [Google Scholar] [CrossRef]
- Yan, G.Q.; Huang, B.L.; Wang, X.; Dai, Z.W.; Zhang, P.; Qin, Z. Sliding-bending failure mechanism and evaluation of bedding limestone bank slope based on rock mass deterioration in Three Gorges Reservoir area. J. Eng. Geol. 2021, 29, 668–679. [Google Scholar] [CrossRef]
- Qin, S.; Jiao, J.J.; Wang, S. A cusp catastrophe model of instability of slip-buckling slope. Rock Mech. Rock Eng. 2001, 34, 119–134. [Google Scholar] [CrossRef]
- Seale, J. An Engineering Geological Investigation of Footwall Toe-Buckle Instability at the Malvern Hills Opencast Coal Mine. Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2006. [Google Scholar]
- Tommasi, P.; Verrucci, L.; Campedel, P.; Veronese, L.; Pettinelli, E.; Ribacchi, R. Buckling of high natural slopes: The case of lavini di marco (trento-Italy). Eng. Geol. 2009, 109, 93–108. [Google Scholar] [CrossRef]
- Dai, Z.W.; Yin, Y.P.; Wei, Y.J.; Lu, T.; Luo, J.H.; Yao, W. Deformation and Failure Mechanism of Outang Landslide in Three Gorges Reservoir Area. J. Eng. Geol. 2016, 24, 44–55. [Google Scholar] [CrossRef]
- Huang, D.; He, J.; Song, Y.X.; Guo, Z.Z.; Huang, X.C.; Guo, Y.Q. Displacement Prediction of the Muyubao Landslide Based on a GPS Time-Series Analysis and Temporal Convolutional Network Model. Remote Sens. 2022, 14, 2656. [Google Scholar] [CrossRef]
- Qi, S.W.; Lan, H.X.; Dong, J.Y. An analytical solution to slip buckling slope failure triggered by earthquake. Eng. Geol. 2015, 194, 4–11. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Ma, M.L.; Shang, Y.Q. Analysis of buckling failure of consequent rock slope. J. Zhejiang Univ. Eng. Sci. 2004, 38, 1144–1149. [Google Scholar]
- Liu, H.Y.; Wang, G.H.; Huang, F. Methods to analyze flexural buckling of the consequent slabbed rock slope under top loading. Math. Probl. Eng. 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Q.; Zheng, G.; Wang, Z.; Jiang, J.J.; Liu, J.Q. Study on the formation condition of buckling deformation along the bedding slope and the contribution rate of the bevel angle. Sci. Technol. Eng. 2021, 21, 2616–2625. [Google Scholar]
- Zou, Z.X.; Mu, R.; Luo, Y.F.; Guo, B.; Tan, L.; Su, A.J.; Tang, C.Y. Progressive evaluation of buckling landslide stability considering strain softening behavior of the slip zone. Int. J. Numer. Anal. Methods Géoméch. 2022, 46, 2680–2697. [Google Scholar] [CrossRef]
- Liao, L.P.; Zhu, Y.Y.; Yang, Z.Q.; Zou, D.H.; Muhammad, W. Analysis on Rock Bedded Slope of Karakoram Highway, Pakistan. Chin. J. Undergr. Space Eng. 2016, 12, 243–249. [Google Scholar]
- Yang, M.Y.; Zou, Z.S.; Wang, G.B.; Zhang, G.X.; Liu, H.Y. Mechanical Analysis of Slip-Buckling Failure of the Consequent Bedded Rock Slope. Henan Sci. 2023, 41, 1036–1045. [Google Scholar]
- Pei, X.J.; Cui, S.H.; Liang, Y.F.; Wang, H. The multiple earthquakes induced progressive failure of the Xinmo landslide, China: Based on shaking table tests. Environ. Earth Sci. 2023, 82, 465. [Google Scholar] [CrossRef]
- Dai, Z.W.; Zhang, Y.J.; Zhang, C.Y.; Fu, X.L.; Zhang, P.; Ye, R.Q. A photographic method to identify reservoir geohazards induced by rock mass deterioration of hydro-fluctuation belt. Front. Earth Sci. 2024, 12, 1365272. [Google Scholar] [CrossRef]
- Feng, W.K.; Yi, X.Y.; Meng, R.; Xiao, R.H.; Su, Y.C.; Zhu, Q.W. Study on deformation response of Muyubao landslide in Three Gorges region under different water fluctuation rates by centrifugal model test. J. Hydrol. Eng. 2021, 52, 578–588. [Google Scholar] [CrossRef]
- Yan, G.Q.; Yin, Y.P.; Huang, B.L.; Hu, L. Deterioration-buckling failure mechanism of consequent bedding limestone bank slope in Three Gorges Reservoir area. Rock Soil Mech. 2022, 43, 2568–2580. [Google Scholar] [CrossRef]
- Weng, M.C.; Lo, C.M.; Wu, C.H.; Chuang, T.F. Gravitational deformation mechanisms of slate slopes revealed by model tests and discrete element analysis. Eng. Geol. 2015, 189, 116–132. [Google Scholar] [CrossRef]
- Wen, Y.M.; Cheng, Y.; Liang, W.; Chen, C.; Zeng, X.Y.; Sun, W.; Lin, Y. Similitude model experiments for studying slipbuckling failures in high and steep side slopes set along the bedding plane of layered rocks. J. Mines Met. Fuels 2017, 65, 515–520. [Google Scholar]
- Cui, L.; Yang, W.Y.; Sheng, Q.; Zheng, J.J.; Ali, N. Deformation behaviour of strain-softening rock mass in tunnels considering deterioration model of elastic modulus. Géoméch. Geophys. Geo-Energy Geo-Resour. 2024, 10, 171. [Google Scholar] [CrossRef]
- Cui, L.; Yang, W.Y.; Sheng, Q.; Zheng, J.J.; Zhang, W.G.; Guan, K.; Song, F. An enhanced numerical model for considering coupled strain-softening and seepage effects on rock masses surrounding a submarine tunnel. J. Rock Mech. Geotech. Eng. 2025, 17, 1445–1458. [Google Scholar] [CrossRef]
- Cui, L.; Sheng, Q.; Zheng, J.J.; Luo, S. Strain-softening constitutive model of granite and sandstone based on experiments and discrete element method. Sci. Rep. 2024, 14, 24308. [Google Scholar] [CrossRef]
- Goodman, R.E.; Taylor, R.L.; Brekke, T.L. A model for the mechanics of jointed rock. J. Soil. Mech. Found. Div. ASCE 1968, 94, 637–659. [Google Scholar] [CrossRef]
- Bandis, S.C.; Lumsden, A.C.; Barton, N.R. Fundamentals of rock joint deformation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1983, 20, 249–268. [Google Scholar] [CrossRef]
- Li, L.Q.; Ju, N.P.; Sheng, D.C. Seismic performance and failure mechanism of interbedded slopes with steep rock layers. Eng. Geol. 2023, 326, 107312. [Google Scholar] [CrossRef]
- Wang, C.; Guo, M.Z.; Chen, X.L.; Gu, K.S.; Gong, Y.F.; Qi, Y.P.; Yuan, D.D.; Zhu, C.; Chen, B.B. Damage evolution of the bedding rock landslide and debris landslide under earthquakes in the Three-rivers Basin. Eng. Geol. 2024, 339, 107631. [Google Scholar] [CrossRef]
- Li, L.Q. Seismic stability of steep consequent rockslides with different lithology assemblies: A comparative Study. Bull. Eng. Geol. Environ. 2024, 83, 353. [Google Scholar] [CrossRef]
- Feng, J.; Zhou, D.P.; Yang, T. Stability analysis of consequent rock slopes using elastic-plastic plate theory. Chin. J. Geotech. Eng. 2010, 32, 1184–1188. [Google Scholar]
- Garzon, S.E.R. Analytical solution for assessing continuum buckling in sedimentary rock slopes based on the tangent-modulus theory. Int. J. Rock Mech. Min. Sci. 2016, 90, 53–61. [Google Scholar] [CrossRef]
- Wang, Q.S.; Zhang, R.T.; Zheng, H.; Zhou, P.Z. An analytical solution of critical sliding displacement for the flexural buckling failure of layered rock slopes. Int. J. Rock Mech. Min. Sci. 2023, 169, 105450. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhou, D.P. Stability analysis of layered dip rocky slopes with elastic plane theory. Rock Soil Mech. 2002, 23, 162–165. [Google Scholar] [CrossRef]
- Wu, P.Y.; Zhang, Z.H.; Dai, F.C.; Yao, A.J. Buckling Deformation Mechanism and Instability Judgment Method of Bedding Rock Slope. J. Jilin Univ. Earth Sci. Ed. 2022, 52, 517–525. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wu, P.Y.; Dai, F.C.; Li, R.J.; Zhao, X.M.; Jiang, S. An analytical solution for buckling failure of rock slopes based on elastoplastic slab theory. Geomech. Eng. 2024, 37, 1–8. [Google Scholar] [CrossRef]
- Pant, S.R.; Adhikary, D.P. Implicit and explicit modelling of flexural buckling of foliated rock slopes. Rock Mech. Rock Eng. 1999, 32, 157–164. [Google Scholar] [CrossRef]
- Ridl, R.N.; Bell, D.H.; Villenueve, M.C.; Macfarlane, D.F. A Simple Method to Model Buckling Slope Instability Using Continuum Numerical Models. In The Evolution of Geotech-25 Years of Innovation, 1st ed.; Hammah, R., Yacoub, T., McQuillan, A., Curran, J., Eds.; CRC Press: London, UK, 2021; pp. 443–449. [Google Scholar]
- Stead, D.; Eberhardt, E. Developments in the analysis of footwall slopes in surface coal mining. Eng. Geol. 1997, 46, 41–61. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D. Mechanisms of Slope Instability in Thinly Bedded Surface Mine Slopes. In Engineering Geology: A global view from the Pacific Rim, Proceedings of 8th International Congress, International Association for Engineering Geology and the Environment, Vancouver, BC, Canada, 21 September 1998; Morre, D., Hungr, O., Morre, D., Hungr, O., Eds.; Eds.; A.A. Balkema: Rotterdam, Netherlands, 1998; pp. 3011–3018. [Google Scholar]
- Alzo’ubi, A.K.; Martin, C.D.; Mughieda, O.S. Numerical modeling of buckling rock movement. In Proceedings of the Continuum and Distinct Element Numerical Modeling in Geomechanics—2011, Melbourne, Australia, 14–16 January 2011. [Google Scholar]
- Huber, M.; Scholtès, L.; Lavé, J. Stability and failure modes of slopes with anisotropic strength: Insights from discrete element models. Geomorphology 2024, 444, 108946. [Google Scholar] [CrossRef]
- Wu, J.H. Applying discontinuous deformation analysis to assess the constrained area of the unstable Chiu-fen-erh-shan landslide slope. Int. J. Numer. Anal. Methods Geomech. 2006, 31, 649–666. [Google Scholar] [CrossRef]
- Zhang, Y.J. Methods for Seismic Stability of Consequent Bedding Rock Slope and DDA Simulation of Landslide Process. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2019. [Google Scholar]
Event Name | Slope Length (m) | Rock Layer | Literature Sources | |||
---|---|---|---|---|---|---|
Dip Angle (°) | Thickness (m) | Thickness Classification | Lithology | |||
Bawang Mountain landslide | 1462 | 40 | 3.0~4.0 | Very thick | Limestone | Qin et al. [42] |
Malvern Hills coal mine flexural failure | 21 | 45 | 2.0~3.0 | Very thick | Laminated mudstone with multiple coal seams | Seale [43] |
Lavini di Marco flexural buckling | 192 | 25~29 | 0.1~0.2 | Medium-thick | Limestones with marly clayey interbeds | Tommasi et al. [44] |
Outang landslide | 1800 | 24~29 | 0.5~3.2 | Medium-thick | Silty mudstone, shale, and argillaceous siltstone | Dai et al. [45] |
Muyubao landslide | 1200 | 27 | 0.1~0.3 | Medium-thick | Quartz sandstone and mudstone | Zhou et al. [31]; Huang et al. [46] |
Xinmo landslide | 250 | 48 | 0.3~1.2 | Medium-thick to thick | Psammitic schist | Zhao et al. [3] |
Xiaguiwa landslide | 1030 | 41 | 1.2~1.4 | Very thick | Amphibolite and mica schist | Li et al. [14] |
Hejia landslide | 1150 | 44~56 | 0.3~0.5 | Medium-thick | Metamorphic tuffaceous sandstone, silty slate | Jin et al. [40] |
Tangjiashan landslide | 905 | 45 | 0.08~0.3 | Thin to medium-thick | Marlstone, limestone, and siltstone | Qi et al. [47]; Jin et al. [40] |
No. | Analytical Approaches | Literature Sources |
---|---|---|
1 | Cavers [18] | |
2 | Liu et al. [49] | |
3 | Garzon [69] | |
4 | Yang et al. [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Fan, N.; Shi, J.; Pei, L.; Tan, J.; Ye, R.; Liu, L. Flexural Buckling Failure of Rock Slopes: A Review of Influencing Factors and Analysis Methods. Appl. Sci. 2025, 15, 5502. https://doi.org/10.3390/app15105502
Zhang Y, Fan N, Shi J, Pei L, Tan J, Ye R, Liu L. Flexural Buckling Failure of Rock Slopes: A Review of Influencing Factors and Analysis Methods. Applied Sciences. 2025; 15(10):5502. https://doi.org/10.3390/app15105502
Chicago/Turabian StyleZhang, Yanjun, Ning Fan, Jiale Shi, Laizheng Pei, Jianmin Tan, Runqing Ye, and Lei Liu. 2025. "Flexural Buckling Failure of Rock Slopes: A Review of Influencing Factors and Analysis Methods" Applied Sciences 15, no. 10: 5502. https://doi.org/10.3390/app15105502
APA StyleZhang, Y., Fan, N., Shi, J., Pei, L., Tan, J., Ye, R., & Liu, L. (2025). Flexural Buckling Failure of Rock Slopes: A Review of Influencing Factors and Analysis Methods. Applied Sciences, 15(10), 5502. https://doi.org/10.3390/app15105502