Crack Identification for Bridge Condition Monitoring Combining Graph Attention Networks and Convolutional Neural Networks
Abstract
:1. Introduction
2. Methodology
2.1. CNN
2.2. GAT
2.3. Framework of the Proposed Method
3. Case Study
3.1. Dataset
3.2. Pre-Training of CNN Model
3.3. Training of the Whole CNN-GAT Model
3.4. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, T.; Hua, J.; Gao, F.; Zhang, H.; Lin, J. Disbond Contour Estimation in Aluminum/CFRP Adhesive Joint Based on the Phase Velocity Variation of Lamb Waves. Smart Mater. Struct. 2022, 31, 095020. [Google Scholar] [CrossRef]
- Ya, S.; Yamada, K.; Ishikawa, T. Fatigue Evaluation of Rib-to-Deck Welded Joints of Orthotropic Steel Bridge Deck. J. Bridg. Eng. 2011, 16, 492–499. [Google Scholar] [CrossRef]
- Tong, T.; Hua, J.; Lin, J.; Zhang, H. Disbond Contours Evaluation in Aluminum/CFRP Adhesive Joint Based on Excitation Recovery of Lamb Waves. Compos. Struct. 2022, 294, 115736. [Google Scholar] [CrossRef]
- Abdel-Qader, I.; Abudayyeh, O.; Kelly, M.E. Analysis of Edge-Detection Techniques for Crack Identification in Bridges. J. Comput. Civ. Eng. 2003, 17, 255–263. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Hashimoto, S. Fast Crack Detection Method for Large-Size Concrete Surface Images Using Percolation-Based Image Processing. Mach. Vis. Appl. 2010, 21, 797–809. [Google Scholar] [CrossRef]
- Yeum, C.M.; Dyke, S.J. Vision-Based Automated Crack Detection for Bridge Inspection. Comput. Civ. Infrastruct. Eng. 2015, 30, 759–770. [Google Scholar] [CrossRef]
- Li, L.; Wang, Q.; Zhang, G.; Shi, L.; Dong, J.; Jia, P. A Method of Detecting the Cracks of Concrete Undergo High-Temperature. Constr. Build. Mater. 2018, 162, 345–358. [Google Scholar] [CrossRef]
- Tong, T.; Hua, J.; Gao, F.; Lin, J. Identification of Bolt State in Lap Joint Based on Propagation Model and Imaging Methods of Lamb Waves. Mech. Syst. Signal Process. 2023, 200, 110569. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput. Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Modarres, C.; Astorga, N.; Droguett, E.L.; Meruane, V. Convolutional Neural Networks for Automated Damage Recognition and Damage Type Identification. Struct. Control Health Monit. 2018, 25, e2230. [Google Scholar] [CrossRef]
- Xu, Y.; Bao, Y.; Zhang, Y.; Li, H. Attribute-Based Structural Damage Identification by Few-Shot Meta Learning with Inter-Class Knowledge Transfer. Struct. Health Monit. 2021, 20, 1494–1517. [Google Scholar] [CrossRef]
- Gopalakrishnan, K.; Khaitan, S.K.; Choudhary, A.; Agrawal, A. Deep Convolutional Neural Networks with Transfer Learning for Computer Vision-Based Data-Driven Pavement Distress Detection. Constr. Build. Mater. 2017, 157, 322–330. [Google Scholar] [CrossRef]
- Laxman, K.C.; Tabassum, N.; Ai, L.; Cole, C.; Ziehl, P. Automated Crack Detection and Crack Depth Prediction for Reinforced Concrete Structures Using Deep Learning. Constr. Build. Mater. 2023, 370, 130709. [Google Scholar] [CrossRef]
- Yu, Y.; Samali, B.; Rashidi, M.; Mohammadi, M.; Nguyen, T.N.; Zhang, G. Vision-Based Concrete Crack Detection Using a Hybrid Framework Considering Noise Effect. J. Build. Eng. 2022, 61, 105246. [Google Scholar] [CrossRef]
- Li, R.; Yu, J.; Li, F.; Yang, R.; Wang, Y.; Peng, Z. Automatic Bridge Crack Detection Using Unmanned Aerial Vehicle and Faster R-CNN. Constr. Build. Mater. 2023, 362, 129659. [Google Scholar] [CrossRef]
- Gwon, G.H.; Lee, J.H.; Kim, I.H.; Jung, H.J. CNN-Based Image Quality Classification Considering Quality Degradation in Bridge Inspection Using an Unmanned Aerial Vehicle. IEEE Access 2023, 11, 22096–22113. [Google Scholar] [CrossRef]
- Waseem Khan, M.; Obaidat, M.S.; Mahmood, K.; Batool, D.; Muhammad Sanaullah Badar, H.; Aamir, M.; Gao, W. Real-Time Road Damage Detection and Infrastructure Evaluation Leveraging Unmanned Aerial Vehicles and Tiny Machine Learning. IEEE Internet Things J. 2024, 11, 21347–21358. [Google Scholar] [CrossRef]
- Cai, R.; Li, J.; Tan, Y.; Shou, W.; Butera, A. Automated Geometric Quantification of Building Exterior Wall Cracks Based on Computer Vision. J. Perform. Constr. Facil. 2024, 38, 04024015. [Google Scholar] [CrossRef]
- Sandric, I.; Chitu, Z.; Ilinca, V.; Irimia, R. Using High-Resolution UAV Imagery and Artificial Intelligence to Detect and Map Landslide Cracks Automatically. Landslides 2024, 21, 2535–2543. [Google Scholar] [CrossRef]
- Lu, W.; Jiang, N.; Jin, D.; Chen, H.; Liu, X. Learning Distinct Relationship in Package Recommendation With Graph Attention Networks. IEEE Trans. Comput. Soc. Syst. 2023, 10, 3308–3320. [Google Scholar] [CrossRef]
- Wang, C.; Yang, K.; Yang, W.; Li, R.; Qiang, H.; Lu, B.; Su, B.; Yang, Z. Assessment of the Urban Habitat Quality Service Functions and Their Drivers Based on the Fusion Module of Graph Attention Network and Residual Network. Int. J. Digit. Earth 2024, 17, 2306310. [Google Scholar] [CrossRef]
- Li, H.; Han, Z.; Sun, Y.; Wang, F.; Hu, P.; Gao, Y.; Bai, X.; Peng, S.; Ren, C.; Xu, X.; et al. CGMega: Explainable Graph Neural Network Framework with Attention Mechanisms for Cancer Gene Module Dissection. Nat. Commun. 2024, 15, 5997. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Govindaraj, V.V.; Górriz, J.M.; Zhang, X.; Zhang, Y.D. COVID-19 Classification by FGCNet with Deep Feature Fusion from Graph Convolutional Network and Convolutional Neural Network. Inf. Fusion 2021, 67, 208–229. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; He, K.; Guan, D.; Zhou, L.; Li, C. Graph Kernel Based Link Prediction for Signed Social Networks. Inf. Fusion 2019, 46, 1–10. [Google Scholar] [CrossRef]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
- Ren, Y.; Huang, J.; Hong, Z.; Lu, W.; Yin, J.; Zou, L.; Shen, X. Image-Based Concrete Crack Detection in Tunnels Using Deep Fully Convolutional Networks. Constr. Build. Mater. 2020, 234, 117367. [Google Scholar] [CrossRef]
Layer | Layer Size | Operation | Kernel Size | No. | Stride |
---|---|---|---|---|---|
Input | 224 × 224 × 3 | Convolution | 20 × 20 × 3 | 24 | 2 |
Layer1 | 103 × 103 × 24 | ReLU | - | - | - |
Layer 2 | 103 × 103 × 24 | Max-pooling | 7 × 7 | - | 2 |
Layer 3 | 49 × 49 × 24 | Convolution | 15 × 15 × 24 | 48 | 2 |
Layer 4 | 18 × 18 × 48 | ReLU | - | - | - |
Layer 5 | 18 × 18 × 48 | Max-pooling | 4 × 4 | - | 2 |
Layer 6 | 8 × 8 × 48 | Convolution | 8 × 8 × 48 | 96 | 1 |
Layer 7 | 1 × 1 × 96 | ReLU | - | - | - |
Epoch | Learning Rate |
---|---|
1–20 | 0.01 |
21–40 | 0.001 |
41–60 | 0.0001 |
61–80 | 0.00001 |
81–100 | 0.000001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Tong, T.; Hua, J.; Cui, C. Crack Identification for Bridge Condition Monitoring Combining Graph Attention Networks and Convolutional Neural Networks. Appl. Sci. 2025, 15, 5452. https://doi.org/10.3390/app15105452
Chen F, Tong T, Hua J, Cui C. Crack Identification for Bridge Condition Monitoring Combining Graph Attention Networks and Convolutional Neural Networks. Applied Sciences. 2025; 15(10):5452. https://doi.org/10.3390/app15105452
Chicago/Turabian StyleChen, Feiyu, Tong Tong, Jiadong Hua, and Chun Cui. 2025. "Crack Identification for Bridge Condition Monitoring Combining Graph Attention Networks and Convolutional Neural Networks" Applied Sciences 15, no. 10: 5452. https://doi.org/10.3390/app15105452
APA StyleChen, F., Tong, T., Hua, J., & Cui, C. (2025). Crack Identification for Bridge Condition Monitoring Combining Graph Attention Networks and Convolutional Neural Networks. Applied Sciences, 15(10), 5452. https://doi.org/10.3390/app15105452