Applications of Machine Learning Technology in Agricultural Data Mining
1. Introduction
2. Overview of Published Articles
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Shaikh, T.A.; Rasool, T.; Lone, F.R. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.-M.; Gerber, J.S.; Reddy, V.R.; et al. Random forests for global and regional crop yield predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef]
- Abade, A.; Ferreira, P.A.; de Barros Vidal, F. Plant diseases recognition on images using convolutional neural networks: A systematic review. Comput. Electron. Agric. 2021, 185, 106125. [Google Scholar] [CrossRef]
- Getahun, S.; Kefale, H.; Gelaye, Y. Application of precision agriculture technologies for sustainable crop production and environmental sustainability: A systematic review. Sci. World J. 2024, 2024, 2126734. [Google Scholar] [CrossRef]
- Mittal, S.; Mehar, M. Socio-economic factors affecting adoption of modern information and communication technology by farmers in India: Analysis using multivariate probit model. J. Agric. Educ. Ext. 2016, 22, 199–212. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Reyes, F.; Casa, R.; Tolomio, M.; Dalponte, M.; Mzid, N. Soil properties zoning of agricultural fields based on a climate-driven spatial clustering of remote sensing time series data. Eur. J. Agron. 2023, 150, 126930. [Google Scholar] [CrossRef]
- Noorain; Srivastava, V.; Parveen, B.; Parveen, R. Artificial intelligence in drug formulation and development: Applications and future prospects. Curr. Drug Metab. 2023, 24, 622–634. [Google Scholar] [CrossRef]
- Helmy, M.; Elhalis, H.; Liu, Y.; Chow, Y.; Selvarajoo, K. Perspective: Multiomics and machine learning help unleash the alternative food potential of microalgae. Adv. Nutr. 2023, 14, 1–11. [Google Scholar] [CrossRef]
- Temitope Olayinka, O. Revolutionalizing Agriculture: The Role of IoT, Artificial Intelligence and Advanced Analytics. Int. J. Innov. Sci. Res. Technol. 2025, 10, 2665–2668. [Google Scholar] [CrossRef]
- Li, J.; Qian, J.; Chen, J.; Ruiz-Garcia, L.; Dong, C.; Chen, Q.; Liu, Z.; Xiao, P.; Zhao, Z. Recent advances of machine learning in the geographical origin traceability of food and agro-products: A review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70082. [Google Scholar] [CrossRef] [PubMed]
- Nakaguchi, V.M.; Abeyrathna, R.R.D.; Ahamed, T. Development of a new grading system for quail eggs using a deep learning-based machine vision system. Comput. Electron. Agric. 2024, 226, 109433. [Google Scholar] [CrossRef]
- Alvarez-García, W.Y.; Mendoza, L.; Muñoz-Vílchez, Y.; Nuñez-Melgar, D.C.; Quilcate, C. Implementing artificial intelligence to measure meat quality parameters in local market traceability processes. Int. J. Food Sci. Technol. 2024, 59, 8058–8068. [Google Scholar] [CrossRef]
- Tanchev, D.; Marazov, A.; Balieva, G.; Lazarova, I.; Rankova, R. Exploring Attributions in Convolutional Neural Networks for Cow Identification. Appl. Sci. 2025, 15, 3622. [Google Scholar] [CrossRef]
- Yoon, Y.; Hwang, T.; Lee, H. Prediction of radiographic abnormalities by the use of bag-of-features and convolutional neural networks. Vet. J. 2018, 237, 43–48. [Google Scholar] [CrossRef]
- Salvi, M.; Molinari, F.; Iussich, S.; Muscatello, L.V.; Pazzini, L.; Benali, S.; Banco, B.; Abramo, F.; De Maria, R.; Aresu, L. Histopathological classification of canine cutaneous round cell tumors using deep learning: A multi-center study. Front. Vet. Sci. 2021, 8, 640944. [Google Scholar] [CrossRef]
- Kostić, M.M.; Grbović, Ž.; Waqar, R.; Ivošević, B.; Panić, M.; Scarfone, A.; Tagarakis, A.C. Corn Plant In-Row Distance Analysis Based on Unmanned Aerial Vehicle Imagery and Row-Unit Dynamics. Appl. Sci. 2024, 14, 10693. [Google Scholar] [CrossRef]
- Badua, S.A.; Sharda, A.; Strasser, R.; Ciampitti, I. Ground speed and planter downforce influence on corn seed spacing and depth. Precis. Agric. 2021, 22, 1154–1170. [Google Scholar] [CrossRef]
- Xing, S.; Lin, Z.; Gao, X.; Wang, D.; Liu, G.; Cao, Y.; Liu, Y. Research on Outgoing Moisture Content Prediction Models of Corn Drying Process Based on Sensitive Variables. Appl. Sci. 2024, 14, 5680. [Google Scholar] [CrossRef]
- Yu, Y.; Luo, Y.; Wang, X.; Wang, X.; Hu, C. Precise Assimilation Prediction of Short-term and Long-term Maize Irrigation Water Based on EnKF-DSSAT and Fuzzy Optimization-DSSAT Models. IEEE Access 2025, 13, 27150–27166. [Google Scholar] [CrossRef]
- Ivanovski, T.; Zhang, X.; Jemric, T.; Gulic, M.; Matetic, M. Peach Firmness Prediction Using Optimized Regression Trees Models. In Proceedings of the 33rd DAAAM International Symposium, Vienna, Austria, 27–28 October 2022; Katalinic, B., Ed.; DAAAM International: Vienna, Austria, 2022; pp. 0480–0489, ISBN 978-3-902734-36-5. [Google Scholar] [CrossRef]
- Benos, L.; Bechar, A.; Bochtis, D. Safety and ergonomics in human-robot interactive agricultural operations. Biosyst. Eng. 2020, 200, 55–72. [Google Scholar] [CrossRef]
- Ye, H.; Lv, L.; Zhou, C.; Sun, D. Fd-CasBGRel: A Joint Entity–Relationship Extraction Model for Aquatic Disease Domains. Appl. Sci. 2024, 14, 6147. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, F.; Bao, H.; Hao, Y.; Zhou, P.; Xu, B. Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017. [Google Scholar]
- Wei, Z.; Su, J.; Wang, Y.; Tian, Y.; Chang, Y. A novel cascade binary tagging framework for relational triple extraction. arXiv 2019, arXiv:1909.03227. [Google Scholar]
- Zheng, H.; Wen, R.; Chen, X.; Yang, Y.; Zhang, Y.; Zhang, Z.; Zhang, N.; Qin, B.; Ming, X.; Zheng, Y. PRGC: Potential Relation and Global Correspondence Based Joint Relational Triple Extraction. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Virtual, 1–6 August 2021; pp. 6225–6235. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlaicu, P.A.; Matei, B. Applications of Machine Learning Technology in Agricultural Data Mining. Appl. Sci. 2025, 15, 5286. https://doi.org/10.3390/app15105286
Vlaicu PA, Matei B. Applications of Machine Learning Technology in Agricultural Data Mining. Applied Sciences. 2025; 15(10):5286. https://doi.org/10.3390/app15105286
Chicago/Turabian StyleVlaicu, Petru Alexandru, and Basarab Matei. 2025. "Applications of Machine Learning Technology in Agricultural Data Mining" Applied Sciences 15, no. 10: 5286. https://doi.org/10.3390/app15105286
APA StyleVlaicu, P. A., & Matei, B. (2025). Applications of Machine Learning Technology in Agricultural Data Mining. Applied Sciences, 15(10), 5286. https://doi.org/10.3390/app15105286