Application of Enhanced Weighted Least Squares with Dark Background Image Fusion for Inhomogeneity Noise Removal in Brain Tumor Hyperspectral Images
Abstract
:1. Introduction
- (1)
- The real hyperspectral brain tumor image dataset was collected, and the mechanism of non-uniform fringe noise was analyzed for the real hyperspectral pathological image dataset by analyzing the detection mode and instrument characteristics of the spatial dimensional push sweep hyperspectral imaging system.
- (2)
- New reference-based and scenario-based correction methods are proposed, respectively. On the one hand, a weighted least squares algorithm with embedded bilateral filtering (BLF-WLS) is proposed, which can preserve the details of pathological images and remove the noise caused by conversion imaging. On the other hand, the instrument fixed-mode noise components in the image data are separated by modeling and computing the black background images that were simultaneously captured.
- (3)
- Through the combination of scene-based and reference-based non-uniformity correction denoising methods, clean and clear hyperspectral brain tumor tissue images were obtained. Combining scene-based and reference-based denoising approaches can be taken into consideration for the non-uniformity noise removal of other spatial dimensions push sweep hyperspectral imaging systems due to its effective denoising effect.
2. The Proposed Method
2.1. Noise Analysis
2.2. Scenario-Based Noise Removal
2.2.1. WLS Algorithm
2.2.2. BLF-WLS Model
2.3. Reference Dark Background Correction
3. Experiment
3.1. Hyperspectral Brain Tumor Tissue Image Acquisition
3.2. Denoised Image
3.3. Comparative Experiment
3.4. Column Value
3.5. Objective Evaluation Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sato, D.; Takamatsu, T.; Umezawa, M.; Kitagawa, Y.; Maeda, K.; Hosokawa, N.; Okubo, K.; Kamimura, M.; Kadota, T.; Akimoto, T.; et al. Author Correction: Distinction of surgically resected gastrointestinal stromal tumor by near-infrared hyperspectral imaging. Sci. Rep. 2021, 11, 19030. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Du, J.; Zhang, Z.; Wang, Q. Tumor tissue classification based on micro-hyperspectral technology and deep learning. Biomed. Opt. Express 2019, 10, 6370–6389. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Pei, Y.; Zhou, R.; Sun, B.; Sun, J.; Li, S.; Kang, X. Fusing Multiple Deep Models for In Vivo Human Brain Hyperspectral Image Classification to Identify Glioblastoma Tumor. IEEE Trans. Instrum. Meas. 2021, 70, 4007314. [Google Scholar] [CrossRef]
- Räsänen, J.; Salmivuori, M.; Pölönen, I.; Grönroos, M.; Neittaanmäki, N. Hyperspectral Imaging Reveals Spectral Differences and Can Distinguish Malignant Melanoma from Pigmented Basal Cell Carcinomas: A Pilot Study. Acta Derm.-Venereol. 2021, 101, adv00405. [Google Scholar] [CrossRef]
- Cooney, G.S.; Barberio, M.; Diana, M.; Sucher, R.; Chalopin, C.; Köhler, H. Comparison of spectral characteristics in human and pig biliary system with hyperspectral imaging (HSI). Curr. Dir. Biomed. Eng. 2020, 6, 20200012. [Google Scholar] [CrossRef]
- Bilal, A.; Liu, X.; Shafiq, M.; Ahmed, Z.; Long, H. NIMEQ-SACNet: A novel self-attention precision medicine model for vision-threatening diabetic retinopathy using image data. Comput. Biol. Med. 2024, 171, 108099. [Google Scholar] [CrossRef]
- Bilal, A.; Imran, A.; Baig, T.I.; Liu, X.; Long, H.; Alzahrani, A.; Shafiq, M. Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification. PLoS ONE 2024, 19, e0295951. [Google Scholar] [CrossRef]
- Ortega, S.; Fabelo, H.; Iakovidis, D.K.; Koulaouzidis, A.; Callico, G.M. Use of hyperspectral/multispectral imaging in gastroenterology: Shedding some–different–light into the dark. J. Clin. Med. 2019, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Halicek, M.; Little, J.V.; Chen, A.Y.; Fei, B. Multiparametric radiomics for predicting the aggressiveness of papillary thyroid carcinoma using hyperspectral images. In Proceedings of the Medical Imaging: Computer-Aided Diagnosis, Online, 15–20 February 2021; p. 1159728. [Google Scholar]
- Kuang, X.; Sui, X.; Chen, Q.; Gu, G. Single Infrared Image Stripe Noise Removal Using Deep Convolutional Networks. IEEE Photonics J. 2017, 9, 3900913. [Google Scholar] [CrossRef]
- Wu, B.; Liu, C.; Xu, R.; He, Z.; Liu, B.; Chen, W.; Zhang, Q. A Target-Based Non-Uniformity Self-Correction Method for Infrared Push-Broom Hyperspectral Sensors. Remote Sens. 2023, 15, 1186. [Google Scholar] [CrossRef]
- Acito, N.; Diani, M.; Corsini, G. Subspace-based striping noise reduction in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1325–1342. [Google Scholar] [CrossRef]
- Arslan, Y.; Oguz, F.; Besikci, C. Extended wavelength SWIR InGaAs focal plane array: Characteristics and limitations. Infrared Phys. Technol. 2015, 70, 134–137. [Google Scholar] [CrossRef]
- Naratanan, B.; Hardie, R.C.; Muse, R.A. Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture. Appl. Opt. 2005, 44, 3482–3491. [Google Scholar] [CrossRef] [PubMed]
- Gadallah, F.L.; Csillag, F.; Smith, E.J.M. Destriping multisensor imagery with moment matching. Int. J. Remote Sens. 2000, 21, 2505–2511. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Y. Hyperspectral image restoration for stripe noise removal using low-rank matrix factorization. Pattern Recognit. 2021, 115, 107907. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, J.; Zhao, Y.; Li, H. Hyperspectral Image Denoising Using Nonconvex Local Low-Rank and Sparse Separation With Spatial–Spectral Total Variation Regularization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Li, D.; Chu, D.; Guan, X.; He, W.; Shen, H. Adaptive Regularized Low-Rank Tensor Decomposition for Hyperspectral Image Denoising and Destriping. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5513917. [Google Scholar] [CrossRef]
- Wang, Z.C. Research on a Bilateral Filtering Based Image Denoising Algorithm for Nightly Infrared Monitoring Images. In Proceedings of the 3rd International Conference on Computer Science and Service System (CSSS), Bangkok, Thailand, 13–15 June 2014; pp. 199–203. [Google Scholar] [CrossRef]
- Li, K.; Zhong, F.; Sun, L. Hyperspectral Image Denoising Based on Multi-Resolution Gated Network with Wavelet Transform. In Proceedings of the 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA), Changchun, China, 20–22 May 2022; pp. 637–642. [Google Scholar] [CrossRef]
- Haar, D.; Zhang, L.; Wang, Y.; Chen, F. Haar Nuclear Norms with Applications to Remote Sensing Imagery Restoration. Remote Sens. 2023, 15, 1234–1249. [Google Scholar]
- Zhang, X.; Li, Y. A new wavelet-based denoising approach for hyperspectral image restoration under mixed noise conditions. Remote Sens. 2021, 13, 2459. [Google Scholar]
- Liu, Y.; Li, W. FIR-based noise suppression method for hyperspectral image denoising. Remote Sens. 2022, 14, 2354. [Google Scholar] [CrossRef]
- Chen, J.; Shao, Y.; Guo, H.; Wang, W.; Zhu, B. Destriping CMODIS data by power filtering. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2119–2124. [Google Scholar] [CrossRef]
- Chen, B.; Feng, X.; Wu, R.; Guo, Q.; Wang, X.; Ge, S. Adaptive wavelet filter with edge compensation for remote sensing image denoising. IEEE Access 2019, 7, 91966–91979. [Google Scholar] [CrossRef]
- Wang, E.; Jiang, P.; Hou, X.; Zhu, Y.; Peng, L. Infrared stripe correction algorithm based on wavelet analysis and gradient equalization. Appl. Sci. 2019, 9, 1993. [Google Scholar] [CrossRef]
- Guan, J.; Lai, R.; Xiong, A. Wavelet deep neural network for stripe noise removal. IEEE Access 2019, 7, 44544–44554. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Liu, L.; Fang, H.; Zhong, S. Infrared aerothermal nonuniform correction via deep multiscale residual network. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1120–1124. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Xu, Y.; Li, Z.; Zuo, W.; Fei, L.; Liu, H. Attention-guided CNN for image denoising. Neural Netw. 2020, 124, 117–129. [Google Scholar] [CrossRef]
- Rossi, A.; Diani, M.; Corsini, G. A comparison of deghosting techniques in adaptive nonuniformity correction for IR focal-plane array systems. In Proceedings of the Electro-Optical and Infrared Systems: Technology and Applications VII, Toulouse, France, 20–23 September 2010; p. 78340D. [Google Scholar] [CrossRef]
- Medina, O.J.; Pezoa, J.E.; Torres, S.N. A frequency domain model for the spatial fixed-pattern noise in infrared focal plane arrays. In Proceedings of the Infrared Sensors, Devices, and Applications; and Single Photon Imaging II, San Diego, CA, USA, 21–25 August 2011; p. 81550H. [Google Scholar] [CrossRef]
- Qian, W.; Chen, Q.; Gu, G.; Guan, Z. Correction method for stripe nonuniformity. Appl. Opt. 2010, 49, 1764–1773. [Google Scholar] [CrossRef]
- Farbman, Z.; Fattal, R.; Lischinski, D.; Szeliski, R. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. (TOG) 2008, 27, 1–10. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted Nuclear Norm Minimization with Application to Image Denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, R.; Wang, Y. A Method for the Destriping of an Orbita Hyperspectral Image with Adaptive Moment Matching and Unidirectional Total Variation. Remote Sens. 2019, 11, 2098. [Google Scholar] [CrossRef]
Parameter | Size |
---|---|
Spectral resolution | 2.3 nm |
Spectral region | 400–1000 nm |
Number of bands | 258 |
Magnification times | 100 |
Raw | WNNM | GDGIF | DNCNN | ADNet | Ours | |
---|---|---|---|---|---|---|
data 1 | 12.1618 | 27.8579 | 15.2247 | 17.5436 | 19.3572 | 47.4616 |
data 2 | 13.4947 | 34.0403 | 17.6455 | 13.4007 | 15.2461 | 43.5728 |
data 3 | 11.4377 | 29.3290 | 18.3316 | 16.2171 | 16.4753 | 47.4629 |
data 4 | 10.4119 | 33.0236 | 18.7476 | 16.5657 | 16.8221 | 45.2892 |
WNNM | GDGIF | DNCNN | AD-Net | Ours | |
---|---|---|---|---|---|
Data01 | 1.1467 | 1.4975 | 0.4163 | 0.4024 | 2.0754 |
Data02 | 1.0590 | 1.9419 | 0.5636 | 0.5429 | 1.8663 |
Data03 | 1.0468 | 1.9603 | 0.4808 | 0.4634 | 1.9746 |
Data04 | 1.0622 | 1.0495 | 0.5071 | 0.4882 | 1.9810 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Tao, C.; Wang, Y.; Du, J.; Qi, M.; Zhang, Z.; Hu, B. Application of Enhanced Weighted Least Squares with Dark Background Image Fusion for Inhomogeneity Noise Removal in Brain Tumor Hyperspectral Images. Appl. Sci. 2025, 15, 321. https://doi.org/10.3390/app15010321
Yan J, Tao C, Wang Y, Du J, Qi M, Zhang Z, Hu B. Application of Enhanced Weighted Least Squares with Dark Background Image Fusion for Inhomogeneity Noise Removal in Brain Tumor Hyperspectral Images. Applied Sciences. 2025; 15(1):321. https://doi.org/10.3390/app15010321
Chicago/Turabian StyleYan, Jiayue, Chenglong Tao, Yuan Wang, Jian Du, Meijie Qi, Zhoufeng Zhang, and Bingliang Hu. 2025. "Application of Enhanced Weighted Least Squares with Dark Background Image Fusion for Inhomogeneity Noise Removal in Brain Tumor Hyperspectral Images" Applied Sciences 15, no. 1: 321. https://doi.org/10.3390/app15010321
APA StyleYan, J., Tao, C., Wang, Y., Du, J., Qi, M., Zhang, Z., & Hu, B. (2025). Application of Enhanced Weighted Least Squares with Dark Background Image Fusion for Inhomogeneity Noise Removal in Brain Tumor Hyperspectral Images. Applied Sciences, 15(1), 321. https://doi.org/10.3390/app15010321