Solvothermal Treatment of Micron-Sized Commercial SrAl2O4:Eu2+, Dy3+ Phosphors and One-Step Preparation of Nanophosphors for Fingerprint Imaging
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization and Optical Properties of S-Phosphor
3.2. Characterization and Optical Properties of Nanophosphor
3.3. Nanophosphor Fingerprint Imaging Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, K.; Le, N.; Wang, J.S.; Huang, L.; Zeng, L.; Xu, W.C.; Li, Z.J.; Li, Y.; Han, G. Designing Next Generation of Persistent Luminescence: Recent Advances in Uniform Persistent Luminescence Nanoparticles. Adv. Mater. 2022, 34, 2107962. [Google Scholar] [CrossRef]
- Pan, Z.W.; Lu, Y.Y.; Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2012, 11, 58–63. [Google Scholar] [CrossRef]
- Yang, X.; Waterhouse, G.I.N.; Lu, S.Y.; Yu, J.H. Recent advances in the design of afterglow materials: Mechanisms, structural regulation strategies and applications. Chem. Soc. Rev. 2023, 52, 8005–8058. [Google Scholar] [CrossRef]
- Li, Y.; Gecevicius, M.; Qiu, J.R. Long persistent phosphors-from fundamentals to applications. Chem. Soc. Rev. 2016, 45, 2090–2136. [Google Scholar] [CrossRef]
- Li, Y.J.; Teng, X.C.; Wang, Y.J.; Yang, C.R.; Yan, X.P.; Li, J.H. Neutrophil Delivered Hollow Titania Covered Persistent Luminescent Nanosensitizer for Ultrosound Augmented Chemo/Immuno Glioblastoma Therapy. Adv. Sci. 2021, 8, e2004381. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.; Zhu, W.; Jiang, Y.Z.; Li, X.W.; Pan, J.B.; Zhang, X.N.; Zhang, X.J.; Sun, S.K. Persistent Luminescence Immune Hydrogel for Photodynamic-Immunotherapy of Tumors In Vivo. Adv. Funct. Mater. 2021, 31, 2104472. [Google Scholar] [CrossRef]
- Feng, S.W.; Ma, Y.J.; Wang, S.Q.; Gao, S.S.; Huang, Q.Q.; Zhen, H.Y.; Yan, D.P.; Ling, Q.D.; Lin, Z.H. Light/Force-Sensitive 0D Lead-Free Perovskites: From Highly Efficient Blue Afterglow to White Phosphorescence with Near-Unity Quantum Efficiency. Angew. Chem. Int. Ed. 2022, 61, e202116511. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Gao, H.Q.; Yang, S.M.; Ding, D.; Lin, Z.H.; Ling, Q.D. Ultrastable and colorful afterglow from organic luminophores in amorphous nanocomposites: Advanced anti-counterfeiting and in vivo imaging application. Nano Res. 2020, 13, 1035–1043. [Google Scholar] [CrossRef]
- Jin, X.Y.; Wang, Z.Y.; Xu, H.Y.; Jia, M.C.; Fu, Z.L. Combining time-evolving multicolor luminescence with intense afterglow of Na2CaGe2O6: Tb3+/Tb3+, Yb3+ phosphors for dynamic anticounterfeiting. Mater. Today Chem. 2022, 24, 100771. [Google Scholar] [CrossRef]
- Fateminia, S.M.A.; Mao, Z.; Xu, S.D.; Yang, Z.Y.; Chi, Z.G.; Liu, B. Organic Nanocrystals with Bright Red Persistent Room-Temperature Phosphorescence for Biological Applications. Angew. Chem. Int. Ed. 2017, 56, 12160–12164. [Google Scholar] [CrossRef]
- Wang, Y.K.; Chen, D.R.; Zhuang, Y.X.; Chen, W.J.; Long, H.Y.; Chen, H.M.; Xie, R.J. NaMgF3:Tb3+@NaMgF3 Nanoparticles Containing Deep Traps for Optical Information Storage. Adv. Opt. Mater. 2021, 9, 2100624. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Wei, H.P.; Liang, P.; Xu, X.K.; Zhang, X.C.; Li, H.H.; Zhang, C.L.; Hu, C.F.; Zhang, X.J.; Lei, B.F.; et al. Near-Infrared-Excited Multicolor Afterglow in Carbon Dots-Based Room-Temperature Afterglow Materials. Angew. Chem. Int. Ed. 2021, 60, 22253–22259. [Google Scholar] [CrossRef] [PubMed]
- Kang, F.W.; Sun, G.H.; Boutinaud, P.; Wu, H.Y.; Ma, F.X.; Lu, J.; Gan, J.L.; Bian, H.D.; Gao, F.; Xiao, S.S. working Recent advances and prospects of persistent luminescent materials as inner secondary self-luminous light source for photocatalytic applications. Chem. Eng. J. 2021, 403, 126099. [Google Scholar] [CrossRef]
- Pei, P.; Chen, Y.; Sun, C.; Fan, Y.; Yang, Y.; Liu, X.; Lu, L.; Zhao, M.; Zhang, H.; Zhao, D.; et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 2021, 16, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Han, C.M.; Du, R.M.; Xu, H.; Han, S.Y.; Ma, P.; Bian, J.K.; Duan, C.B.; Wei, Y.; Sun, M.Z.; Liu, X.G.; et al. Ladder-like energy-relaying exciplex enables 100% internal quantum efficiency of white TADF-based diodes in a single emissive layer. Nat. Commun. 2021, 12, 3640. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.O.; Lee, K.H.; Kim, J.S.; Ihn, S.-G.; Chung, Y.S.; Kim, J.W.; Lee, H.; Kim, S.; Choi, H.; Lee, J.Y. High-efficiency, long-lifetime deep-blue organic light-emitting diodes. Nat. Photonics 2021, 15, 208–215. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wu, W.J.; Cui, D.X.; Chen, X.Y.; Li, W.W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. Adv. Mater. 2021, 33, 2004734. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Song, L.; Liu, N.A.; Shi, J.P.; Zhang, Y. Chromium-Doped Zinc Gallate Near-Infrared Persistent Luminescence Nanoparticles in Autofluorescence-Free Biosensing and Bioimaging: A Review. ACS Appl. Nano Mater. 2021, 4, 6497–6514. [Google Scholar] [CrossRef]
- Yang, Y.L.; Yang, X.C.; Yuan, J.Y.; Li, T.; Fan, Y.T.; Wang, L.; Deng, Z.; Li, Q.L.; Wan, D.Y.; Zhao, J.T.; et al. Time-Resolved Bright Red to Cyan Color Tunable Mechanoluminescence from CaZnOS: Bi3+, Mn2+ for Anti-Counterfeiting Device and Stress Sensor. Adv. Opt. Mater. 2021, 9, 2100668. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Yu, Q.; Wei, H.; Liu, S.; Zhao, Q.; Huang, W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem. Rev. 2018, 118, 1770–1839. [Google Scholar] [CrossRef]
- Dang, P.P.; Wei, Y.; Liu, D.J.; Li, G.G.; Lin, J. Recent Advances in Chromium-Doped Near-Infrared Luminescent Materials: Fundamentals, Optimization Strategies, and Applications. Adv. Opt. Mater. 2023, 11, 2201739. [Google Scholar] [CrossRef]
- Kumar, A.; Crista, D.M.A.; Núñez-Montenegro, A.; da Silva, J.; Verma, S.K. Annealing-assisted optimization for persistency of afterglow of SrAl2O4:Eu2+/Dy3+ microparticles for forensic detection. Rsc Adv. 2023, 13, 28676–28685. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Liu, Y.H.; Hulme, B.; Chang, L.Y.; Ke, S.W.; Wang, E.R.; Wu, Y.H.; Lin, B.H.; Jiang, Y.Y.; Liu, L.J. ZnGa2O4:Cr3+@Calcium Phosphate Nanocomposite with Near-Infrared Persistent Luminescence and High Stability. ChemPhotoChem 2023, 7, e202300143. [Google Scholar] [CrossRef]
- Rojas-Hernandez, R.E.; Rubio-Marcos, F.; Rodriguez, M.A.; Fernandez, J.F. Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material. Renew. Sustain. Energy Rev. 2018, 81, 2759–2770. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.Q.; Wang, C.; Xiong, X.B.; Wang, Y.Q. Low-temperature and short-time preparation of short rod-like Zn2GeO4:Mn2+ luminescent nanoparticles. J. Mater. Sci. Mater. Electron. 2023, 34, 1477. [Google Scholar] [CrossRef]
- Abdu, M.T.; Khattab, T.A.; Abdelrahman, M.S. Development of Photoluminescent and Photochromic Polyester Nanocomposite Reinforced with Electrospun Glass Nanofibers. Polymers 2023, 15, 761. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Cheung, T.S.; Leung, N.L.C.; Zhang, J.Y.; Guo, J.; Du, L.L.; Kwok, R.T.K.; Lam, J.W.Y.; Zeng, Z.B.; Phillips, D.L.; et al. Organic Long-Persistent Luminescence from a Single-Component Aggregate. J. Am. Chem. Soc. 2022, 144, 3050–3062. [Google Scholar] [CrossRef]
- Vaidyanathan, S. Recent progress on lanthanide-based long persistent phosphors: An overview. J. Mater. Chem. C 2023, 11, 8649–8687. [Google Scholar] [CrossRef]
- Wei, G.H.; Li, P.L.; Li, R.; Wang, Y.; He, S.X.; Li, J.H.; Shi, Y.W.; Suo, H.; Yang, Y.B.; Wang, Z.J. How to Achieve Excellent Luminescence Properties of Cr Ion-Doped Near-Infrared Phosphors. Adv. Opt. Mater. 2023, 11, 2301794. [Google Scholar] [CrossRef]
- Yang, X.Y.; Tang, B.M.; Cao, X.J. The roles of dopant concentration and defect states in the optical properties of Sr2MgSi2O7:Eu2+, Dy3+. J. Alloys Compd. 2023, 949, 169841. [Google Scholar] [CrossRef]
- Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y. A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4:Eu2+, Dy3+. J. Electrochem. Soc. 1996, 143, 2670. [Google Scholar] [CrossRef]
- Gao, P.; Wang, J.G.; Wu, J.; Xu, Q.Q.; Yang, L.X.; Liu, Q.X.; Qi, Y.S.; Li, Z.J. Preparation of SrAl2O4:Eu2+, Dy3+ Powder by Combustion Method and Application in Anticounterfeiting. Coatings 2023, 13, 808. [Google Scholar] [CrossRef]
- Gong, J.S.; Dai, W.B.; Luo, J.; Nie, K.; Xu, M. Insights into structure, local site symmetry, and energy transfer for regulating luminescent properties of SrLaLiTeO6: Dy/Eu and its application in wLEDs. Ceram. Int. 2023, 49, 31024–31034. [Google Scholar] [CrossRef]
- Huang, Z.F.; Chen, B.; Ren, B.Y.; Tu, D.; Wang, Z.F.; Wang, C.F.; Zheng, Y.T.; Li, X.; Wang, D.; Ren, Z.B.; et al. Smart Mechanoluminescent Phosphors: A Review of Strontium-Aluminate-Based Materials, Properties, and Their Advanced Application Technologies. Adv. Sci. 2023, 10, 2204925. [Google Scholar] [CrossRef] [PubMed]
- Leimane, M.; Krizmane, K.; Bite, I.; Grube, J.; Vitola, V. Sol-Gel Synthesis of Translucent and Persistent Luminescent SiO2@ SrAl2O4 Eu, Dy, B Materials. Materials 2023, 16, 4416. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Ren, B.; Zhang, X.; Zhu, M.; Liang, T.; Huang, Z.; Zheng, Y.; Li, X.; Li, J.; Zheng, Z.; et al. Modulating Smart Mechanoluminescent Phosphors for Multistimuli Responsive Optical Wood. Adv. Sci. 2023, 11, e2305066. [Google Scholar] [CrossRef]
- Tang, H.; Li, H.; Song, R.; Yang, Z.; Zhao, R.; Guo, Z.; Li, J.; Wang, B.; Zhu, J. Highly thermostable Ba2Ln2Ge4O13:Dy3+ (Ln = Y, Gd) phosphors: Synthesis and optical properties. Ceram. Int. 2023, 49, 31898–31906. [Google Scholar] [CrossRef]
- Yang, Y.W.; Chen, Y.; Pei, P.; Fan, Y.; Wang, S.F.; Zhang, H.X.; Zhao, D.Y.; Qian, B.Z.; Zhang, F. Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging. Nat. Nanotechnol. 2023, 18, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.R.; Zheng, M.T.; Lei, B.F.; Xiao, Y.; Dong, H.W.; Liu, Y.L.; Liu, X.T.; Deng, J.J.; Deng, J.W.; Huang, Z.L. Preparation and Long-Lasting Phosphorescence Properties of BaAlSi5N7O2: Eu2+. ECS Solid State Lett. 2013, 2, R16–R18. [Google Scholar] [CrossRef]
- Poort, S.H.M.; Blokpoel, W.P.; Blasse, G. Luminescence of Eu2+ in barium and strontium aluminate and gallate. Chem. Mater. 1995, 7, 1547–1551. [Google Scholar] [CrossRef]
- Setlur, A.A.; Comanzo, H.A.; Srivastava, A.M.; Beers, W.W. Spectroscopic Evaluation of a White Light Phosphor for UV-LEDs—Ca2NaMg2V3O12: Eu3+. J. Electrochem. Soc. 2005, 152, H205. [Google Scholar] [CrossRef]
- Fang, Y.-C.; Chu, S.-Y.; Kao, P.-C.; Chuang, Y.-M.; Zeng, Z.-L. Energy Transfer and Thermal Quenching Behaviors of CaLa2 ( MoO4 ) 4 : Sm3+ , Eu3+ Red Phosphors. J. Electrochem. Soc. 2011, 158, J1. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Lei, B.; Qin, J.; Liu, Y.; Xiao, Y.; Zheng, M.; Sha, L. Luminescent properties of green long-lasting Ca8Mg(SiO4)4Cl2:Eu2+, from Ca2SiO4:Eu3+ and MgCl2 at low temperature. Phys. B Condens. Matter 2013, 430, 31–35. [Google Scholar] [CrossRef]
- Xia, Z.G.; Liu, R.S.; Huang, K.W.; Drozd, V. Ca2Al3O6F:Eu2+: A green-emitting oxyfluoride phosphor for white light-emitting diodes. J. Mater. Chem. 2012, 22, 15183–15189. [Google Scholar] [CrossRef]
- Kozlova, L.O.; Ioni, Y.V.; Son, A.G.; Buzanov, G.A.; Murav’eva, G.P.; Kozerozhets, I.V. Low-Temperature Synthesis of Highly Dispersed Strontium Aluminate. Russ. J. Inorg. Chem. 2023, 68, 1744–1751. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Liu, X.; Lin, W.; Liu, Y. Solvothermal Treatment of Micron-Sized Commercial SrAl2O4:Eu2+, Dy3+ Phosphors and One-Step Preparation of Nanophosphors for Fingerprint Imaging. Appl. Sci. 2024, 14, 3929. https://doi.org/10.3390/app14093929
Liu R, Liu X, Lin W, Liu Y. Solvothermal Treatment of Micron-Sized Commercial SrAl2O4:Eu2+, Dy3+ Phosphors and One-Step Preparation of Nanophosphors for Fingerprint Imaging. Applied Sciences. 2024; 14(9):3929. https://doi.org/10.3390/app14093929
Chicago/Turabian StyleLiu, Rungang, Xueting Liu, Weikai Lin, and Yingliang Liu. 2024. "Solvothermal Treatment of Micron-Sized Commercial SrAl2O4:Eu2+, Dy3+ Phosphors and One-Step Preparation of Nanophosphors for Fingerprint Imaging" Applied Sciences 14, no. 9: 3929. https://doi.org/10.3390/app14093929
APA StyleLiu, R., Liu, X., Lin, W., & Liu, Y. (2024). Solvothermal Treatment of Micron-Sized Commercial SrAl2O4:Eu2+, Dy3+ Phosphors and One-Step Preparation of Nanophosphors for Fingerprint Imaging. Applied Sciences, 14(9), 3929. https://doi.org/10.3390/app14093929