Numerical Analysis for Shear Behavior of Binary Interfaces under Different Bonded Conditions
Abstract
:1. Introduction
2. Numerical Modeling of Binary Interfaces with Different Bonded Conditions
- (1)
- Modeling
- (2)
- Parameter assignment
- (3)
- Shear loading
3. Shear Mechanical Behavior under Different Bonded Conditions
3.1. Influence of Bonded Conditions on Shear Stress–Shear Displacement Curve
3.2. Influence of Bonded Conditions on Strength Parameters
3.3. Influence of Bonded Conditions on Crack Development
3.4. Influence of Bonded Conditions on Stress Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Q.T.; Xie, W.B.; Jing, S.G.; Wang, X.K.; Su, Z.L. Experimental and Numerical Investigation on the Mechanical Behavior of Rock-Like Material with Complex Discrete Joints. Rock Mech. Rock Eng. 2024, 1–19. [Google Scholar] [CrossRef]
- Yan, Y.T.; Wang, S.W. Simulation investigation of mechanical and failure characteristics of jointed rock with different shapes of joint asperities under compression loading. Comput. Part. Mech. 2023, 10, 45–59. [Google Scholar] [CrossRef]
- Wang, S.C.; Yang, X.X.; Li, W.T.; Qiao, W.G. Influence of a Rock Bridge on the Shearing Behavior of Nonpersistent Rough Joints: An Experimental Study. Rock Mech. Rock Eng. 2023, 56, 2573–2588. [Google Scholar] [CrossRef]
- Lin, H.; Wang, M.; Xu, W. Shear Behaviors of the Binary Structural Plane. Geotech. Geol. Eng. 2018, 36, 939–948. [Google Scholar] [CrossRef]
- Sun, B.; Wang, P.; Zhang, G.; Deng, M.; Liu, W.; Xu, J. Endurance time history analysis of the seismic behavior and performance assessment of hydro-chemo-mechanical degradation-affected hydraulic tunnels with service time. Undergr. Space 2024, 17, 207–225. [Google Scholar] [CrossRef]
- Stavropoulou, E.; Dano, C.; Boulon, M. Shear Response of Wet Weak Carbonate Rock/Grout Interfaces Under Cyclic Loading. Rock Mech. Rock Eng. 2021, 54, 2791–2813. [Google Scholar] [CrossRef]
- Renaud, S.; Bouaanani, N.; Miquel, B. Experimental, analytical, and finite element assessment of the shear strength of concrete-rock interfaces at different scales. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 1238–1259. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, Y.; Tang, H.; Fang, K.; Jiang, Y.; Liu, C.; Wang, L.; Wang, X.; Kang, J. Investigation on the shear properties of discontinuities at the interface between different rock types in the Badong formation, China. Eng. Geol. 2018, 245, 280–291. [Google Scholar] [CrossRef]
- Chang, X.; Guo, T.; Lu, J.; Wang, H. Experimental study on rock-concrete joints under cyclically diametrical compression. Geomech. Eng. 2019, 17, 553–564. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, H.; Yan, P.; Zhang, J.; Ding, Y. The influence of roughness on cyclic and post-cyclic shear behavior of red clay-concrete interface subjected to up to 1000 cycles. Constr. Build. Mater. 2021, 273, 121718. [Google Scholar] [CrossRef]
- Qiu, H.; Chen, B.; Wang, F.; Liao, F.; Wang, M.; Wan, D. Investigating dynamic fracture in marble-mortar interface under impact loading. Constr. Build. Mater. 2022, 336, 127548. [Google Scholar] [CrossRef]
- Tang, W.Y.; Lin, H.; Chen, Y.F.; Feng, J.J.; Hu, H.H. Mechanical Characteristics and Acoustic Emission Characteristics of Mortar-Rock Binary Medium. Buildings 2022, 12, 665. [Google Scholar] [CrossRef]
- Yuan, W.; Min, M. Investigation on the scale dependence of shear mechanical behavior of rock joints using DEM simulation. Comput. Part. Mech. 2023, 10, 1613–1627. [Google Scholar] [CrossRef]
- Ghazvinian, A.H.; Taghichian, A.; Hashemi, M.; Mar’ashi, S.A. The Shear Behavior of Bedding Planes of Weakness Between Two Different Rock Types with High Strength Difference. Rock Mech. Rock Eng. 2009, 43, 69–87. [Google Scholar] [CrossRef]
- Cao, R.; Tang, W.; Lin, H.; Fan, X. Numerical Analysis for the Progressive Failure of Binary-Medium Interface under Shearing. Adv. Civ. Eng. 2018, 2018, 4197172. [Google Scholar] [CrossRef]
- Yan, Z.-X.; Long, Z.; Qu, W.-R.; Zhang, S.; Jiang, P. The effect of shear on the anchorage interface of rock slope with weak layers under earthquake. Rock Soil Mech. 2019, 40, 2882–2890. [Google Scholar] [CrossRef]
- Wang, H.-W.; Wu, Z.-M.; Wang, Y.-J.; Yu, R.C. Investigation on crack propagation perpendicular to mortar-rock interface: Experimental and numerical. Int. J. Fract. 2020, 226, 45–69. [Google Scholar] [CrossRef]
- Qiu, H.; Zhu, Z.; Wang, F.; Wang, M.; Zhou, C.; Luo, C.; Wang, X.; Mao, H. Dynamic behavior of a running crack crossing mortar-rock interface under impacting load. Eng. Fract. Mech. 2020, 240, 107202. [Google Scholar] [CrossRef]
- Han, L.; Lin, H.; Chen, Y.; Lei, D. Effects of strength property difference on shear strength of joint of binary media. Environ. Earth Sci. 2021, 80, 712. [Google Scholar] [CrossRef]
- Tang, W.Y.; Lin, H. Influence of Internal Friction Angle and Interface Roughness on Shear Behavior of Mortar-Rock Binary Medium Joint. Geotech. Geol. Eng. 2021, 39, 3917–3929. [Google Scholar] [CrossRef]
- Lin, H.; Han, L.; Wang, Y.X.; Cao, R.H.; Zhao, Y.L.; Jiang, C. Influence of the Micro-deformation Characteristics of Binary Media on the Shear Behavior of Structural Plane. Geotech. Geol. Eng. 2021, 39, 347–358. [Google Scholar] [CrossRef]
- Fei, F.; Choo, J.; Liu, C.; White, J.A. Phase-field modeling of rock fractures with roughness. Int. J. Numer. Anal. Methods Geomech. 2022, 46, 841–868. [Google Scholar] [CrossRef]
- Yu, D.; Liu, E.; Sun, P.; Xiang, B.; Zheng, Q. Mechanical properties and binary-medium constitutive model for semi-through jointed mudstone samples. Int. J. Rock Mech. Min. Sci. 2020, 132, 104376. [Google Scholar] [CrossRef]
- Wang, H.; Sun, H.; He, Y.; Su, P. Stick-slip behaviour of mortar-rock interface under high loading rate. Proc. Inst. Civ. Eng.-Geotech. Eng. 2021, 174, 19–32. [Google Scholar] [CrossRef]
- Dong, W.; Yuan, W.; Zhang, B.; Zhong, H. Energy-Based Fracture Criterion of Rock-Concrete Interface Considering Viscoelastic Characteristics. J. Eng. Mech. 2022, 148, 04021155. [Google Scholar] [CrossRef]
Rocks | Results | Poisson Ratio | Tangent Modulus/GPa | Uniaxial Compressive Strength/MPa |
---|---|---|---|---|
Mudstone | Test | 0.320 | 4.7 | 11.50 |
Simulation | 0.321 | 4.7 | 11.39 | |
Limestone | Test | 0.114 | 42.6 | 51.80 |
Simulation | 0.114 | 42.8 | 51.50 |
Rocks | Rigidity Ratio | Bonded Modulus/GPa | Strength Parameters/MPa | Max Particle Size/mm | Particle Size Ratio |
---|---|---|---|---|---|
Mudstone | 8 | 0.455 | 4.9 | 0.9 | 1.5 |
Limestone | 1.5 | 3.30 | 17.8 | 0.9 | 1.5 |
Model | Normal Stiffness/GPa | Tangential Stiffness/GPa | Friction Coefficient |
---|---|---|---|
Smooth joint | 100 | 0.8 | 0.54 |
Shear Strength Parameters | Bonded Conditions of Binary Interfaces | ||||
---|---|---|---|---|---|
0% | 25% | 50% | 75% | 100% | |
Cohesion/MPa | 0 | 1.56 | 1.69 | 2.25 | 4.25 |
Friction coefficient | 0.53 | 0.66 | 0.69 | 0.69 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, H.; Han, L.; Zhang, X.; Lin, H. Numerical Analysis for Shear Behavior of Binary Interfaces under Different Bonded Conditions. Appl. Sci. 2024, 14, 3686. https://doi.org/10.3390/app14093686
Lv H, Han L, Zhang X, Lin H. Numerical Analysis for Shear Behavior of Binary Interfaces under Different Bonded Conditions. Applied Sciences. 2024; 14(9):3686. https://doi.org/10.3390/app14093686
Chicago/Turabian StyleLv, Haijun, Lu Han, Xing Zhang, and Hang Lin. 2024. "Numerical Analysis for Shear Behavior of Binary Interfaces under Different Bonded Conditions" Applied Sciences 14, no. 9: 3686. https://doi.org/10.3390/app14093686
APA StyleLv, H., Han, L., Zhang, X., & Lin, H. (2024). Numerical Analysis for Shear Behavior of Binary Interfaces under Different Bonded Conditions. Applied Sciences, 14(9), 3686. https://doi.org/10.3390/app14093686