An Unsupervised Learning Method for Suppressing Ground Roll in Deep Pre-Stack Seismic Data Based on Wavelet Prior Information for Deep Learning in Seismic Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Network Architecture of WPI-SD
2.2. The Design of the Network Loss Function
2.3. Training Process of the Network
3. Results and Discussion
3.1. Synthetic Example
3.2. Field Data Example
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, G. Completing 70 Years of Development in 150 Years of Developed Countries: Oil: Never Forget the Original Intention, Live up to the Original Intention. China Pet. Petrochem. 2019, 21, 22–35. (In Chinese) [Google Scholar]
- Melo, P.E.M.; Porsani, M.J.; Siva, M.G. Ground roll attenuation using a 2D time derivative filter. Geophys. Prospect. 2009, 57, 343–353. [Google Scholar] [CrossRef]
- Liang, H.-X. Energy replacement surface wave suppression technique based on frequency constraint. Prog. Geophys. 2017, 32, 1169–1173. [Google Scholar]
- Wang, W.; Lin, C.; Zhang, Z. Amplitude preserved low frequency surface wave suppression and its application. Prog. Geophys. 2015, 30, 1190–1194. [Google Scholar]
- Lu, P.-F.; Guo, A.-H.; He, Y.-S.; Zhang, J.-K.; Shi, W.-W.; Wu, K.-L. Research on surface wave suppression combined with Curvelet transform and Fourier transform. Prog. Geophys. 2020, 35, 2181–2187. [Google Scholar] [CrossRef]
- Li, X.-X.; Li, Q.-C. Rayleigh wave dispersion curve imaging using improved F-K transform approach. Prog. Geophys. 2017, 32, 191–197. [Google Scholar] [CrossRef]
- Wang, D.-Y.; Ling, Y. Phase-shift- and phase-filtering-based surface-wave suppression method. Appl. Geophys. 2016, 13, 614–620. [Google Scholar] [CrossRef]
- Deughan, A.J.; Watts, D.R. Ground roll suppression using the wavelet transform. Geophysics 1997, 62, 1896–1903. [Google Scholar] [CrossRef]
- Meng, J.; Han, Z.; Gao, Q.; Li, Y. Seismic surface wave suppression algorithm based on Wavelet Spectrum Energy Curve-Empirical Wavelet Transform (WSEC-EWT). Prog. Geophys. 2021, 36, 1581–1589. [Google Scholar]
- Hu, R.; Wang, Y.; Yue, Z.; Wang, Q. Feature extraction in wavelet domain and its application to shallow seismic data surface-wave suppression. Geophys. Geochem. Explor. 2018, 42, 1228–1236. [Google Scholar]
- Kong, X.-L.; Chen, H.; Hu, Z.-Q.; Kang, J.-X.; Xu, T.-J.; Li, L.-M. Surface wave attenuation based polarization attributes in time-frequency domain for multicomponent seismic data. Appl. Geophys. 2018, 15, 99–110. [Google Scholar] [CrossRef]
- Zeng, X.; Qiao, B.; Liu, Y.; Zhou, T.; Hu, T. Adaptive Groundroll Attenuation Based on the Wavelet Transform. Acta Sci. Nat. Univ. Pekin. 2015, 51, 837–842. [Google Scholar]
- Wang, W.; Yang, W.; Wei, X.; He, X. Ground roll wave suppression based on wavelet frequency division and radial trace transform. Appl. Geophys. 2017, 14, 96–104. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Zhou, J.; Jian, S.; Zeng, Z. A Curvelet threshold iteration method based on energy ratio for surface-wave suppression. Oil Geophys. Prospect. 2019, 54, 997–1004. [Google Scholar] [CrossRef]
- Yuan, H.; Hu, Z.D.; Liu, Z.; Ma, J.W. Ground roll attenuation based on an empirical curvelet transform. Appl. Geophys. 2018, 15, 111–117. [Google Scholar] [CrossRef]
- Wang, D.; Li, Z.; Huang, J.; Yang, L.; Chen, P. A surface wave suppression method based on scale-partition. Acta Pet. Sin. 2014, 35, 303–309. [Google Scholar]
- Bi, Y.; Wang, J.; Xu, X.; Qu, G.; Zhang, Y. Ground roll attenuation based on the combination of discrete curvelet transform dictionary and two-dimensional local discrete cosine transform dictionary. Geophys. Prospect. Pet. 2017, 56, 222–231. [Google Scholar]
- Russell, B.; Hampson, D.; Chun, J. Noise elimination and the Radon transform, Part 1. Lead. Edge 1990, 9, 18–23. [Google Scholar] [CrossRef]
- Meng, H.; Su, Q.; Zeng, H.; Liu, H.; Zhang, X. Research and Application of Radial Transform and Singular Value Decomposition Combined Denoising Method in Ground Roll Suppression. In Proceedings of the 2019 Oil and Gas Geophysical Academic Annual Conference, Dalian, China, 28–29 September 2019; pp. 502–505. [Google Scholar]
- An, S.; Hu, T. Research on Ground Roll Suppression Based on Adaptive Weighted Super Virtual Interferometry Method. Sci. China Earth Sci. 2016, 46, 1371–1380. [Google Scholar] [CrossRef]
- Xu, X.; Qu, G.; Zhang, Y.; Bi, Y.; Wang, J. Ground-roll separation of seismic data based on morphological component analysis in two-dimensional domain. Appl. Geophys. 2016, 13, 116–126+220. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Yang, J.; Huang, J.; Sun, M. Ground Roll Suppression Method Based on Morphological Component Analysis, Compressed Sensing, and Local Similarity Correction. J. China Univ. Pet. (Ed. Nat. Sci.) 2023, 47, 36–43. [Google Scholar]
- Li, H.; Wu, G.; Yin, X. Amplitude-preserved ground-roll suppression method based on morphological component analysis. Oil Geophys. Prospect. 2013, 48, 351–358, I–II. [Google Scholar]
- Chen, A.; Zou, W. Surface wave suppression technique based on S-Transform. World Geol. 2005, 24, 82–86. [Google Scholar]
- Zhou, Z.; Liu, B. Surface wave suppression technology based on S-transform with variable factor. Comput. Tech. Geophys. Geochem. Explor. 2013, 35, 555–560. [Google Scholar]
- Meng, J.; Gao, Q.; Li, Y. Noise suppression algorithm for seismic data based on SSEC-EWT. Oil Geophys. Prospect. 2021, 56, 1010–1021. [Google Scholar]
- Dai, R.; Yang, J. Amplitude-Versus-Angle (AVA) Inversion for Pre-Stack Seismic Data with L0-Norm-Gradient Regularization. Mathematics 2023, 11, 880. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, R.; Chen, J.; Li, S.; Huang, K.; Cao, H.; Farag, M.A.; Battino, M.; Daglia, M.; Capanoglu, E. Health benefits of saponins and its mechanisms: Perspectives from absorption, metabolism, and interaction with gut. Crit. Rev. Food Sci. Nutr. 2023. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Chen, P.; Gu, H. LM-DeeplabV3+: A Lightweight Image Segmentation Algorithm Based on Multi-Scale Feature Interaction. Appl. Sci. 2024, 14, 1558. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, P.; Gu, Y.; Li, X. Velocity auto-picking from seismic velocity spectra based on deep learning. Geophys. Prospect. Pet. 2019, 58, 724–733. [Google Scholar]
- Wang, J.; Chen, R.; Ma, X.; Wu, B. Unsupervised seismic data random noise suppression method based on weighted total variation regularization and ADMM solution. Oil Geophys. Prospect. 2023, 58, 766–779, 800. [Google Scholar]
- Rincon-Yanez, D.; De Lauro, E.; Petrosino, S.; Senatore, S.; Falanga, M. Identifying the Fingerprint of a Volcano in the Background Seismic Noise from Machine Learning-Based Approach. Appl. Sci. 2022, 12, 6835. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, J.; Chen, H.; Jiang, X. Estimating the amplitude spectrum of seismic wavelet via prior knowledge embedded deep learning. Oil Geophys. Prospect. 2021, 56, 969–978. [Google Scholar]
- Sun, W.; Cao, H.; Yang, Z.; Yan, X. Identification and automatic tagging of dactylogram minutiae in seismic data. Geophys. Prospect. Pet. 2022, 61, 213–223. [Google Scholar]
- Jin, C.; Chen, S. Seismic data reconstruction based on compressed sensing and deep learning. Geophys. Prospect. Pet. 2022, 61, 782–792. [Google Scholar]
- Yi, J.; Zhang, M.; Li, Z.; Li, K. Review of deep learning seismic data reconstruction methods. Prog. Geophys. 2023, 38, 361–381. [Google Scholar]
- Zhang, Y.; Liu, X.; Li, J.; Dong, H. Seismic Data Reconstruction Based on Joint Time-Frequency Deep Learning. J. Jilin Univ. Earth Sci. Ed. 2023, 53, 283–296. [Google Scholar]
- Zong, Z.; He, D.; Sun, C. Interpret pre-stack seismic data with multi-label based on deep learning. Prog. Geophys. 2022, 37, 1258–1265. [Google Scholar]
- Zhang, Y.; Li, J.; Wang, B.; Li, X.; Dong, H. Seismic data regularization based on deep learning combining wavelet domain. Oil Geophys. Prospect. 2022, 57, 777–788. [Google Scholar]
- Zhang, Y.; Zhou, Y.; Song, L.; Dong, H. Low frequency continuation of seismic data based on physically constrained U-Net network. Oil Geophys. Prospect. 2023, 58, 31–45. [Google Scholar]
- Zhao, B.; Han, L.; Zhang, P.; Yin, Y. Weak Signal Enhancement for Passive Seismic Data Reconstruction Based on Deep Learning. Remote Sens. 2022, 14, 5318. [Google Scholar] [CrossRef]
- Zhao, H.; Bai, T.; Wang, Z. A Natural Images Pre-Trained Deep Learning Method for Seismic Random Noise Attenuation. Remote Sens. 2022, 14, 263. [Google Scholar] [CrossRef]
- Ji, G.; Wang, C. A Denoising Method for Seismic Data Based on SVD and Deep Learning. Appl. Sci. 2022, 12, 12840. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Z.; Gao, J. Ground Roll Attenuation of Multicomponent Seismic Data with the Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD) Method. Appl. Sci. 2022, 12, 2429. [Google Scholar] [CrossRef]
- Yu, S.; Yang, W.; Li, H.; Wang, X.; Ma, J. Scattered ground roll intelligent attenuation based on deep learning. Chin. Sci. Bull.-Chin. 2021, 66, 2343–2354. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Sun, X.; Sun, M.; Peng, D. Current situation and development trend of surface wave suppression technology in seismic processing. Prog. Geophys. 2022, 37, 1178–1188. [Google Scholar]
- Xu, S. Research on Seismic Data Denoising Method Based on Deep Learning; China University of Geosciences: Beijing, China, 2021. [Google Scholar]
- Pham, N.; Li, W. Physics-constrained deep learning for ground roll attenuation. Geophysics 2022, 87, V15–V27. [Google Scholar] [CrossRef]
- Liu, D.; Chen, W.; Sacchi, M.D.; Wang, H. Should we have labels for deep learning ground roll attenuation? In SEG Technical Program Expanded Abstracts 2020; Society of Exploration Geophysicists: Houston, TX, USA, 2020; pp. 3239–3243. [Google Scholar] [CrossRef]
- Xu, S.; Yuan, Y.; Ping, F.; Zheng, Y.; Feng, L. Ground roll attenuation based on conditional and cycle generative adversarial networks. In Proceedings of the SEG 2019 Workshop: Mathematical Geophysics: Traditional vs. Learning, Beijing, China, 5–7 November 2019; Society of Exploration Geophysicists: Houston, TX, USA, 2020. [Google Scholar] [CrossRef]
Parameter | Parameter Setting | Parameter | Parameter Setting |
---|---|---|---|
Model size | 3000 samples × 240 traces | Time sampling interval | 2 ms |
Reflection wave velocity | 800–1000 m/s | Ground roll wave velocity | 200–500 m/s |
Reflection wave source wavelet type | Ricker | Ground roll wave source wavelet type | Ricker |
Reflection wave dominant frequency | 25–35 Hz | Ground roll wave dominant frequency | 5–15 Hz |
Maximum amplitude of effective wave | 2–5 | Maximum amplitude of ground roll wave | 4–10 |
Method | F-K | Curvelet | WPI-SD |
---|---|---|---|
Q | −0.771 | −0.696 | −0.801 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J.; Dai, Y. An Unsupervised Learning Method for Suppressing Ground Roll in Deep Pre-Stack Seismic Data Based on Wavelet Prior Information for Deep Learning in Seismic Data. Appl. Sci. 2024, 14, 2971. https://doi.org/10.3390/app14072971
Xia J, Dai Y. An Unsupervised Learning Method for Suppressing Ground Roll in Deep Pre-Stack Seismic Data Based on Wavelet Prior Information for Deep Learning in Seismic Data. Applied Sciences. 2024; 14(7):2971. https://doi.org/10.3390/app14072971
Chicago/Turabian StyleXia, Jiarui, and Yongshou Dai. 2024. "An Unsupervised Learning Method for Suppressing Ground Roll in Deep Pre-Stack Seismic Data Based on Wavelet Prior Information for Deep Learning in Seismic Data" Applied Sciences 14, no. 7: 2971. https://doi.org/10.3390/app14072971
APA StyleXia, J., & Dai, Y. (2024). An Unsupervised Learning Method for Suppressing Ground Roll in Deep Pre-Stack Seismic Data Based on Wavelet Prior Information for Deep Learning in Seismic Data. Applied Sciences, 14(7), 2971. https://doi.org/10.3390/app14072971