A Compound Approach for Monitoring the Variation in Wind Turbine Power Performance with SCADA Data
Abstract
:1. Introduction
2. Data Pre-Processing Methodology
2.1. Data Cleaning and Feature Construction
2.2. Feature Extraction and Dimensionality Reduction
2.2.1. KPCA Methodology
2.2.2. Application Example
3. Power Performance Monitoring Model
3.1. AdaBoost Methodology
3.2. Model Construction
4. Application Example Analysis
4.1. Case 1: Blade Damage Fault Diagnosis
4.2. Case 2: Power Performance Optimization Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Huang, W.; Ali, S. Asymmetric linkages between wind energy and ecological sustainability: Evidence from quantile estimation. Environ. Dev. 2023, 45, 100798. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Sun, F.; Kleidon, A. Potential impact of global stilling on wind energy production in China. Energy 2023, 263, 125727. [Google Scholar] [CrossRef]
- Dao, P.B. Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data. Renew. Energy 2022, 185, 641–654. [Google Scholar] [CrossRef]
- Xiang, L.; Yang, X.; Hu, A.; Su, H.; Wang, P. Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks. Appl. Energy 2022, 305, 103–112. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, C.; Tan, J.; Tan, Y.; Rao, L. Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning. Renew. Energy 2022, 189, 90–103. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, W.; Zhang, G.; Shu, L. Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data. Renew. Energy 2021, 171, 103–115. [Google Scholar] [CrossRef]
- Huang, J.; Cui, L.; Zhang, J. Novel morphological scale difference filter with application in localization diagnosis of outer raceway defect in rolling bearings. Mech. Mach. Theory 2023, 184, 260–268. [Google Scholar] [CrossRef]
- Sun, S.; Wang, T.; Chu, F. A multi-learner neural network approach to wind turbine fault diagnosis with imbalanced data. Renew. Energy 2023, 208, 420–430. [Google Scholar] [CrossRef]
- Miao, Y.; Zhao, M.; Liang, K.; Lin, J. Application of an improved MCKDA for fault detection of wind turbine gear based on encoder signal. Renew. Energy 2020, 151, 192–203. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Long, H.; Xu, J.; Liu, R. Wind turbine gearbox failure identification with deep neural networks. IEEE Trans. Ind. Inform. 2017, 13, 1360–1368. [Google Scholar] [CrossRef]
- Sun, S.; Wang, T.; Yang, H.; Chu, F. Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function. Renew. Energy 2022, 181, 59–70. [Google Scholar] [CrossRef]
- Badihi, H.; Zhang, Y.; Pillay, P.; Rakheja, S. Fault-tolerant individual pitch control for load mitigation in wind turbines with actuator faults. IEEE Trans. Ind. Electron. 2020, 68, 532–543. [Google Scholar] [CrossRef]
- Cho, S.; Choi, M.; Gao, Z.; Moan, T. Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks. Renew. Energy 2021, 169, 21–33. [Google Scholar] [CrossRef]
- Dibaj, A.; Gao, Z.; Nejad, A.R. Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements. Renew. Energy 2023, 203, 161–176. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Z.; Zhang, L. Wind turbine blade bearing fault detection with Bayesian and Adaptive Kalman Augmented Lagrangian Algorithm. Renew. Energy 2022, 199, 1016–1023. [Google Scholar] [CrossRef]
- Wang, A.; Pei, Y.; Zhu, Y.; Qian, Z. Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern. Renew. Energy 2023, 211, 918–937. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C.; Yan, F. Condition monitoring of wind turbine based on incremental learning and multivariate state estimation technique. Renew. Energy 2022, 184, 343–360. [Google Scholar] [CrossRef]
- Georg, H.; Matthias, R. Improving wind turbine power curve monitoring with standardization. Renew. Energy 2020, 145, 1040–1048. [Google Scholar]
- Bilendo, F.; Meyer, A.; Badihi, H.; Lu, N.; Cambron, P.; Jiang, B. Applications and modeling techniques for wind turbine power curve for wind farms—A review. Energies 2023, 16, 180. [Google Scholar] [CrossRef]
- Quraan, A.; Masri, H.; Mahamodi, M.; Radaideh, A. Power curve modeling of wind turbine—A comparison study. IET Renew. Power Gener. 2022, 16, 362–374. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Q.; Srinivasan, D.; Wang, Z. Wind power curve modeling and wind power forecasting with inconsistent data. IEEE Trans. Sustain. Energy 2019, 10, 16–25. [Google Scholar] [CrossRef]
- Wang, W.; Yang, S.; Yang, Y. An Improved Data-Efficiency Algorithm Based on Combining Isolation Forest and Mean Shift for Anomaly Data Filtering in Wind Power Curve. Energies 2022, 15, 4918. [Google Scholar] [CrossRef]
- Yao, Q.; Hu, Y.; Liu, J.; Zhao, T.; Qi, X.; Sun, S. Power Curve Modeling for Wind Turbine Using Hybrid-driven Outlier Detection Method. J. Mod. Power Syst. Clean Energy 2023, 11, 1115–1125. [Google Scholar] [CrossRef]
- Gonzalez, E.; Stephen, B.; Infield, D.; Melero, J. Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study. Renew. Energy 2019, 131, 841–853. [Google Scholar] [CrossRef]
- Guo, P.; Gan, Y.; Infield, D. Wind turbine performance degradation monitoring using DPGMM and Mahalanobis distance. Renew. Energy 2022, 200, 1–9. [Google Scholar] [CrossRef]
- Zuo, C.; Dai, J.; Li, G.; Li, M.; Zhang, F. Investigation of Data Pre-Processing Algorithms for Power Curve Modeling of Wind Turbines Based on ECC. Energies 2023, 16, 2679. [Google Scholar] [CrossRef]
- Paik, C.; Chung, Y.; Kim, Y.J. Power Curve Modeling of Wind Turbines through Clustering-Based Outlier Elimination. Appl. Syst. Innov. 2023, 6, 41. [Google Scholar] [CrossRef]
- IEC 61400-12-1; Wind Turbines-Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines. Edition 3.0. International Electrotechnical Commission: Geneva, Switzerland, 2017.
- Wiggelinkhuizen, E.; Verbruggen, T.; Braam, H.; Xiang, J.; Watson, S. Assessment of condition monitoring techniques for offshore wind farms. J. Sol. Energy Eng. 2008, 130, 121–129. [Google Scholar] [CrossRef]
- Yao, Q.; Zhu, H.; Xiang, L.; Su, H.; Hu, A. A novel composed method of cleaning anomy data for improving state prediction of wind turbine. Renew. Energy 2023, 204, 131–140. [Google Scholar] [CrossRef]
- Morrison, R.; Liu, X.; Lin, Z. Anomaly detection in wind turbine SCADA data for power curve cleaning. Renew. Energy 2022, 184, 473–486. [Google Scholar] [CrossRef]
- Kusiak, A.; Zheng, H.; Song, Z. Models for monitoring wind farm power. Renew. Energy 2009, 34, 583–590. [Google Scholar] [CrossRef]
- Müller, K.R.; Mika, S.; Rätsch, G.; Tsuda, K.; Schölkopf, B. An Introduction to Kernel-Based Learning Algorithms. IEEE Trans. Neural Netw. 2001, 12, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Kruger, U.; Xie, L.; Almansoori, A.; Su, H. Adaptive KPCA Modeling of Nonlinear Systems. IEEE Trans. Signal Process. 2015, 63, 2364–2376. [Google Scholar] [CrossRef]
- Kearns, M.; Valiant, L. Cryptographic limitations on learning Boolean formulae and finite automata. J. ACM 1994, 41, 67–95. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
Turbine Label | Prior KT | Posterior KT | KT Increase | Uncertainty Error |
---|---|---|---|---|
A28 | 0.26% | 5.23% | 4.97% | 0.17% |
A30 | −0.15% | 4.45% | 4.60% | −0.2% |
A32 | 0.08% | 5.46% | 5.28% | 0.48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, D.; Zhou, L.; Li, C. A Compound Approach for Monitoring the Variation in Wind Turbine Power Performance with SCADA Data. Appl. Sci. 2024, 14, 2963. https://doi.org/10.3390/app14072963
Wang X, Liu D, Zhou L, Li C. A Compound Approach for Monitoring the Variation in Wind Turbine Power Performance with SCADA Data. Applied Sciences. 2024; 14(7):2963. https://doi.org/10.3390/app14072963
Chicago/Turabian StyleWang, Xin, Deyou Liu, Ling Zhou, and Chao Li. 2024. "A Compound Approach for Monitoring the Variation in Wind Turbine Power Performance with SCADA Data" Applied Sciences 14, no. 7: 2963. https://doi.org/10.3390/app14072963
APA StyleWang, X., Liu, D., Zhou, L., & Li, C. (2024). A Compound Approach for Monitoring the Variation in Wind Turbine Power Performance with SCADA Data. Applied Sciences, 14(7), 2963. https://doi.org/10.3390/app14072963