Marginal Adaptation and Porosity of a Novel MTA Brand Applied as Root-End Filling Material: A Micro-CT Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Construction
2.2. Root Canal Preparation
2.3. Root-End Cavity Preparation
2.4. Root-End Cavity Filling
2.5. Micro-CT Scans and Analysis
2.6. Statistical Analyses
3. Results
Overview of Results
- OPV (or interfacial gaps and pores volume) was measured at 0.0268 ± 0.0087 mm3, which represented 0.91% as a relative value;
- CPV (or internal pores volume): 0.0283 ± 0.0114 mm3 or 0.94% of the mean retrofilling volume;
- TPV, or cumulative volume of gaps and voids in the tested cement, was calculated at 0.0569 ± 0.0163 mm3 or 1.85% of the mean retrocavity volume;
- The average pore size (as diameter) was 4.383 ± 2.061 μm.
- OPV vs. CPV (a): t = −0.413, df = 9, p = 0.689;
- OPV% vs. CPV% (b): t = −0.263, df = 9, p = 0.798.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camilleri, J.; Atmeh, A.; Li, X.; Meschi, N. Present status and future directions: Hydraulic materials for endodontic use. Int. Endod. J. 2022, 55, 710–777, Erratum in Int. Endod. J. 2023, 56, 402. [Google Scholar] [CrossRef]
- Abusrewil, S.M.; McLean, W.; Scott, J.A. The use of Bioceramics as root-end filling materials in periradicular surgery: A literature review. Saudi Dent. J. 2018, 30, 273–282. [Google Scholar] [CrossRef]
- Estrela, C.; Cintra, L.T.A.; Duarte, M.A.H.; Rossi-Fedele, G.; Gavini, G.; Sousa-Neto, M.D. Mechanism of action of Bioactive Endodontic Materials. Braz. Dent. J. 2023, 34, 1–11. [Google Scholar] [CrossRef]
- Nawal, R.R.; Yadav, S.; Talwar, S.; Malhotra, R.K.; Pruthi, P.J.; Goel, S.; Malik, R.; Shailat, M. The influence of calcium silicate-based cement on osseous healing: A systematic review and meta-analysis. J. Conserv. Dent. 2023, 26, 122–133. [Google Scholar]
- Wang, X.; Xiao, Y.; Song, W.; Ye, L.; Yang, C.; Xing, Y.; Yuan, Z. Clinical application of calcium silicate-based bioceramics in endodontics. J. Transl. Med. 2023, 21, 853. [Google Scholar] [CrossRef]
- Dong, X.; Xu, X. Bioceramics in Endodontics: Updates and Future Perspectives. Bioengineering 2023, 10, 354. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part I: Vital pulp therapy. Int. Endod. J. 2018, 51, 177–205. [Google Scholar] [CrossRef]
- Harvard MTA Universal. Available online: https://harvard-dental-international.de/wp-content/uploads/2022/03/Flyer_MTA-Universal_EN.pdf (accessed on 22 January 2024).
- Galal, M.; Zaki, D.Y.; Rabie, M.I.; El-Shereif, S.M.; Hamdy, T.M. Solubility, pH change, and calcium ion release of low solubility endodontic mineral trioxide aggregate. Bull. Natl. Res. Cent. 2020, 44, 42. [Google Scholar] [CrossRef]
- El-Ma’aita, A.M.; Qualtrough, A.J.; Watts, D.C. The effect of smear layer on the push-out bond strength of root canal calcium silicate cements. Dent. Mater. 2013, 29, 797–803. [Google Scholar] [CrossRef]
- Uysal, B.A.; Güngör, A.S. Effect of Trichloroacetic Acid on the Bond Strength of Calcium Silicate-Based Cements: A Modified Push-Out Test. Bezmialem Sci. 2022, 10, 194–198. [Google Scholar] [CrossRef]
- Youssef, A.R.; Elsherief, S. Evaluation of the cytotoxic effects of a new Harvard MTA compared to MTA Flow and ProRoot MTA on human gingival fibroblasts. Saudi Dent. J. 2021, 33, 679–686. [Google Scholar] [CrossRef]
- Dimitrova, I.; Kouzmanova, Y. Impact of photodynamic therapy on the marginal adaptation of biodentine used as root-end filling material. Biomed. Mater. Eng. 2023, 34, 277–287. [Google Scholar] [CrossRef]
- Zafar, K.; Jamal, S.; Ghafoor, R. Bio-active cements-Mineral Trioxide Aggregate based calcium silicate materials: A narrative review. J. Pak. Med. Assoc. 2020, 70, 497–504. [Google Scholar] [CrossRef]
- Ng, Y.L.; Gulabivala, K. Factors that influence the outcomes of surgical endodontic treatment. Int. Endod. J. 2023, 56, 116–139. [Google Scholar] [CrossRef]
- Liu, S.Q.; Chen, X.; Wang, X.X.; Liu, W.; Zhou, X.; Wang, X. Outcomes and prognostic factors of apical periodontitis by root canal treatment and endodontic microsurgery-a retrospective cohort study. Ann. Palliat. Med. 2021, 10, 5027–5045. [Google Scholar] [CrossRef]
- Setzer, F.; Harley, M.; Cheung, J.; Karabucak, B. Possible causes for failure of endodontic surgery—A retrospective series of 20 resurgery cases. Eur. Endod. J. 2021, 6, 235–241. [Google Scholar] [CrossRef]
- Moazzami, F.; Jahandizi, N.G.; Shokouhi, M.M.; Ghahramani, Y. Sealing Ability of Nano-fast Cement vs. Mineral Trioxide Aggregate as Retrograde Apical Plugs: An In-vitro Microleakage Study. Iran. Endod. J. 2023, 18, 206–210. [Google Scholar] [CrossRef]
- Paños-Crespo, A.; Sánchez-Torres, A.; Gay-Escoda, C. Retrograde filling material in periapical surgery: A systematic review. Med. Oral Patol. Oral Cir. Bucal 2021, 26, e422–e429. [Google Scholar] [CrossRef]
- Eskandari, F.; Razavian, A.; Hamidi, R.; Yousefi, K.; Borzou, S. An Updated Review on Properties and Indications of Calcium Silicate-Based Cements in Endodontic Therapy. Int. J. Dent. 2022, 2022, 6858088. [Google Scholar] [CrossRef]
- Kouzmanova, Y.; Dimitrova, I.V. Comparative Evaluation of the Hermeticity of Sealing of Calcium-Silicate Cements Used in Furcal Perforation Repair. In Properties and Uses of Calcium Silicate, 1st ed.; Carlton, A.G., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2022; pp. 53–102. [Google Scholar]
- Abou ElReash, A.; Hamama, H.; Comisi, J.C.; Zaeneldin, A.; Xiaoli, X. The effect of retrograde material type and surgical techniques on the success rate of surgical endodontic retreatment: Systematic review of prospective randomized clinical trials. BMC Oral Health 2021, 21, 375. [Google Scholar] [CrossRef]
- Chang, S.W. Chemical Composition and Porosity Characteristics of Various Calcium Silicate-Based Endodontic Cements. Bioinorg. Chem. Appl. 2018, 2018, 2784632. [Google Scholar] [CrossRef]
- El-Sherief, S.M.; Rabie, M.I.; Negm, A.M. Marginal adaptation of a new formulation of MTA material used as root-end filling: A scanning electron microscopy (SEM) study. Egypt. Dent. J. 2019, 65, 2813–2819. [Google Scholar] [CrossRef]
- Akinci, L.; Simsek, N.; Aydinbelge, H.A. Physical properties of MTA, BioAggregate and Biodentine in simulated conditions: A micro-CT analysis. Dent. Mater. J. 2020, 39, 601–607. [Google Scholar] [CrossRef]
- Jain, R.N.; Abraham, S.; Karad, R.R.; Najan, H.B.; Vaswani, S.D.; Torris, A. Micro-computed tomographic analysis of the marginal adaptation of a calcium silicate-based cement to radicular dentin after removal of three different intracanal medicaments—An in vitro study. J. Conserv. Dent. 2020, 23, 598–603. [Google Scholar] [CrossRef]
- Jardine, A.P.; Rosa, K.F.V.; Matoso, F.B.; Quintana, R.M.; Grazziotin-Soares, R.; Kopper, P.M.P. Marginal gaps and internal voids after root-end filling using three calcium silicate-based materials: A Micro-CT analysis. Braz. Dent. J. 2021, 32, 1–7. [Google Scholar] [CrossRef]
- Kwon, S.Y.; Seo, M.S. Comparative evaluation of volumetric changes of three different retrograde calcium silicate materials placed under different pH condititions. BMC Oral Health 2020, 20, 330. [Google Scholar] [CrossRef]
- Celikten, B.; Oncu, A.; Koohnavard, M.; Ocak, M.; Orhan, K. Micro-CT comparative evaluation of porosity and dentin adaptation of root end filling materials applied with incremental, bulk, and ultrasonic activation techniques. Proc. Inst. Mech. Eng. H 2022, 236, 1209–1215. [Google Scholar] [CrossRef]
- Torres, F.F.E.; Bosso-Martelo, R.; Espir, C.G.; Cirelli, J.A.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M. Evaluation of physicochemical properties of root-end filling materials using conventional and Micro-CT tests. J. Appl. Oral Sci. 2017, 25, 374–380. [Google Scholar] [CrossRef]
- Torres, F.F.E.; Jacobs, R.; EzEldeen, M.; Guerreiro-Tanomaru, J.M.; Dos Santos, B.C.; Lucas-Oliveira, É.; Bonagamba, T.J.; Tanomaru-Filho, M. Micro-computed tomography high resolution evaluation of dimensional and morphological changes of 3 root-end filling materials in simulated physiological conditions. J. Mater. Sci. Mater. Med. 2020, 31, 14. [Google Scholar] [CrossRef]
- Toia, C.C.; Teixeira, F.B.; Cucco, C.; Valera, M.C.; Cavalcanti, B.N. Filling ability of three bioceramic root-end filling materials: A micro-computed tomography analysis. Aust. Endod. J. 2020, 46, 424–431. [Google Scholar] [CrossRef]
- Al Fouzan, K.; Awadh, M.; Badwelan, M.; Gamal, A.; Geevarghese, A.; Babhair, S.; Al-Rejaie, M.; Al Hezaimi, K.; Rotstein, I. Marginal adaptation of mineral trioxide aggregate (MTA) to root dentin surface with orthograde/retrograde application techniques: A microcomputed tomographic analysis. J. Conserv. Dent. 2015, 18, 109–113. [Google Scholar] [CrossRef]
- Torres, F.F.E.; Pinto, J.C.; Figueira, G.O.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M. A micro-computed tomographic study using a novel test model to assess the filling ability and volumetric changes of bioceramic root repair materials. Restor. Dent. Endod. 2021, 46, e2. [Google Scholar] [CrossRef]
- Torres, F.F.E.; Guerreiro-Tanomaru, J.M.; Chavez-Andrade, G.M.; Pinto, J.C.; Berbert, F.L.C.V.; Tanomaru-Filho, M. Micro-computed tomographic evaluation of the flow and filling ability of endodontic materials using different test models. Restor. Dent. Endod. 2020, 45, e11. [Google Scholar] [CrossRef]
- Hafezi-Ardakani, M.; Moztarzadeh, F.; Rabiee, M.; Talebi, A.R. Synthesis and characterization of nanocrystalline merwinite (Ca3Mg(SiO4)2) via sol–gel method. Ceram. Int. 2011, 37, 175–180. [Google Scholar] [CrossRef]
- Mihailova, I.K.; Radev, L.; Aleksandrova, V.A.; Colova, I.V.; Salvado, I.M.M.; Fernandes, M.H.V. Novel merwinite/akermanite ceramics: In vitro bioactivity. Bulg. Chem. Commun. 2015, 47, 253–260. [Google Scholar]
- De Colle, M.; Kielman, R.; Karlsson, A.; Karasev, A.; Jönsson, P.G. Study of the Dissolution of Stainless-Steel Slag Minerals in Different Acid Environments to Promote Their Use for the Treatment of Acidic Wastewaters. Appl. Sci. 2021, 11, 12106. [Google Scholar] [CrossRef]
- Engstrom, F.; Adolfsson, D.; Samuelsson, C.; Sandström, A.; Björkman, B. A study of the solubility of pure slag minerals. Miner. Eng. 2013, 41, 46–52. [Google Scholar] [CrossRef]
- Dimitrova, S.V.; Mihailova, I.K.; Nikolov, V.S.; Mehandjiev, D.R. Adsorption capacity of modified metallurgical slag. Bulg. Chem. Commun. 2012, 44, 30–36. [Google Scholar]
- Camilleri, J.; Wang, C.; Kandhari, S.; Heran, J.; Shelton, R.M. Methods for testing solubility of hydraulic calcium silicate cements for root-end filling. Sci. Rep. 2022, 12, 7100. [Google Scholar] [CrossRef]
- Kouzmanova, Y.; Dimitrova, I. Solubility of calcium silicate-based cements. Acta Medica Bulg. 2020, 47, 27–29. [Google Scholar] [CrossRef]
- Torres, F.F.E.; Guerreiro-Tanomaru, J.M.; Bosso-Martelo, R.; Espir, C.G.; Pinto, J.C.; Tanomaru-Filho, M. Micro-computed Tomography Analysis of the Effect of Immersion Time on Volumetric Stability of Different Endodontic Materials. Mater. Res. 2020, 23, e20200201. [Google Scholar] [CrossRef]
- Torres, F.F.E.; Jacobs, R.; EzEldeen, M.; de Faria-Vasconcelos, K.; Guerreiro-Tanomaru, J.M.; Dos Santos, B.C.; Tanomaru-Filho, M. How image-processing parameters can influence the assessment of dental materials using micro-CT. Imaging Sci. Dent. 2020, 50, 161–168. [Google Scholar] [CrossRef]
- Torres, F.F.E.; Jacobs, R.; EzEldeen, M.; de Faria-Vasconcelos, K.; Guerreiro-Tanomaru, J.M.; Dos Santos, B.C.; Tanomaru-Filho, M. How do imaging protocols affect the assessment of root-end fillings? Restor. Dent. Endod. 2022, 47, e2. [Google Scholar] [CrossRef]
- Camilleri, J.; Grech, L.; Galea, K.; Keir, D.; Fenech, M.; Formosa, L.; Damidot, D.; Mallia, B. Porosity and root dentine to material interface assessment of calcium silicate-based root-end filling materials. Clin. Oral Investig. 2014, 18, 1437–1446. [Google Scholar] [CrossRef]
- Chen, B.; Lin, W.; Liu, X.; Iacoviello, F.; Shearing, P.; Robinson, I. Pore structure development during hydration of tricalcium silicate by X-ray nano-imaging in three dimensions. Constr. Build. Mater. 2019, 200, 318–323. [Google Scholar] [CrossRef]
- Sarna-Boś, K.; Skic, K.; Sobieszczański, J.; Boguta, P.; Chałas, R. Contemporary Approach to the Porosity of Dental Materials and Methods of Its Measurement. Int. J. Mol. Sci. 2021, 22, 8903. [Google Scholar] [CrossRef]
- Ghavami-Lahiji, M.; Davalloo, R.T.; Tajziehchi, G.; Shams, P. Micro-computed tomography in preventive and restorative dental research: A review. Imaging Sci. Dent. 2021, 51, 341–350. [Google Scholar] [CrossRef]
- Torres, F.F.E.; Guerreiro-Tanomaru, J.M.; Bosso-Martelo, R.; Chavez-Andrade, G.M.; Tanomaru Filho, M. Solubility, porosity and fluid uptake of calcium silicate-based cements. J. Appl. Oral Sci. 2018, 26, e20170465. [Google Scholar] [CrossRef]
- Harvard Dental International. Root Canal MTA Special. Available online: https://harvard-dental-international.de/en/products/endodontics/root-canal-mta-special/harvard-mta-repair/ (accessed on 22 January 2024).
Characteristics | Mean | SEM | 95% CI of Mean | SD | Min | Max |
---|---|---|---|---|---|---|
OPV (μm3) | 0.0268 a | 0.0028 | (0.0206–0.0330) | 0.0087 | 0.0152 | 0.0448 |
OPV (%) | 0.9080 b | 0.0872 | (0.7108–1.1052) | 0.2757 | 0.5400 | 1.4800 |
CPV (μm3) | 0.0283 a | 0.0036 | (0.0201–0.0364) | 0.0114 | 0.0124 | 0.0438 |
CPV (%) | 0.9400 b | 0.1046 | (0.7034–1.1766) | 0.3308 | 0.4900 | 1.4800 |
TPV (μm3) | 0.0569 | 0.0052 | (0.0452–0.0686) | 0.0163 | 0.0316 | 0.0772 |
TPV (%) | 1.8490 | 0.1502 | (1.5092–2.1888) | 0.4750 | 1.3300 | 2.6000 |
Mean pore size (μm) | 4.3830 | 0.6517 | (2.9087–5.8573) | 2.0610 | 2.2300 | 8.4200 |
Generations | Main Characteristics | Representatives |
---|---|---|
1st Generation | MTA Original | ProRoot MTA |
2nd Generation | Modifications to MTA | MTA Angelus (gray and white form) |
3rd Generation | Bioaggregate, Biodentine, Ortho MTA, MTA BIO, | |
Bioceramics group | EndoSequence BC (iRootSP), Aureoseal, Bio MTA+, | |
(New formulations) | MTA Repair HP, Neo MTA Plus, Bio-C Repair, | |
BiOfactor MTA, MTA Bio-C Pulpo, MTA Bio Rep, Endo-Eze MTA Flow, RootDent, Harvard MTA, CEM cement, ALBO-MPCA, Trioxident, One-Fill PT, etc. | ||
4th Generation | Hybrid cements | TheraCal LC |
(Light-cured) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouzmanova, Y.; Dimitrova, I. Marginal Adaptation and Porosity of a Novel MTA Brand Applied as Root-End Filling Material: A Micro-CT Study. Appl. Sci. 2024, 14, 2758. https://doi.org/10.3390/app14072758
Kouzmanova Y, Dimitrova I. Marginal Adaptation and Porosity of a Novel MTA Brand Applied as Root-End Filling Material: A Micro-CT Study. Applied Sciences. 2024; 14(7):2758. https://doi.org/10.3390/app14072758
Chicago/Turabian StyleKouzmanova, Yaneta, and Ivanka Dimitrova. 2024. "Marginal Adaptation and Porosity of a Novel MTA Brand Applied as Root-End Filling Material: A Micro-CT Study" Applied Sciences 14, no. 7: 2758. https://doi.org/10.3390/app14072758
APA StyleKouzmanova, Y., & Dimitrova, I. (2024). Marginal Adaptation and Porosity of a Novel MTA Brand Applied as Root-End Filling Material: A Micro-CT Study. Applied Sciences, 14(7), 2758. https://doi.org/10.3390/app14072758