Near to Mid-Infrared (1.3–5 μm) Widely Tunable, High Power Picosecond Pulsed Laser
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Output Beam Profiles
3.2. Wavelength Tunability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganikhanov, F.; Carrasco, S.; Xie, X.S.; Katz, M.; Seitz, W.; Kopf, D. Broadly Tunable Dual-Wavelength Light Source for Coherent Anti-Stokes Raman Scattering Microscopy. Opt. Lett. 2006, 31, 1292–1294. [Google Scholar] [CrossRef]
- Jurna, M.; Korterik, J.; Offerhaus, H.; Otto, C. Noncritical Phase-Matched Lithium Triborate Optical Parametric Oscillator for High Resolution Coherent Anti-Stokes Raman Scattering Spectroscopy and Microscopy. Appl. Phys. Lett. 2006, 89, 251116. [Google Scholar] [CrossRef]
- Freudiger, C.W.; Min, W.; Saar, B.G.; Lu, S.; Holtom, G.R.; He, C.; Tsai, J.C.; Kang, J.X.; Xie, X.S. Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science 2008, 322, 1857–1861. [Google Scholar] [CrossRef]
- Woutersen, S.; Emmerichs, U.; Bakker, H.J. Femtosecond Mid-IR Pump-Probe Spectroscopy of Liquid Water: Evidence for a Two-Component Structure. Science 1997, 278, 658–660. [Google Scholar] [CrossRef]
- Papantonakis, M.R.; Haglund, R.F. Picosecond Pulsed Laser Deposition at High Vibrational Excitation Density: The Case of Poly(Tetrafluoroethylene). Appl. Phys. A 2004, 79, 1687–1694. [Google Scholar] [CrossRef]
- Kolev, V.Z.; Duering, M.W.; Luther-Davies, B.; Rode, A.V. Compact High-Power Optical Source for Resonant Infrared Pulsed Laser Ablation and Deposition of Polymer Materials. Opt. Express 2006, 14, 12302–12309. [Google Scholar] [CrossRef]
- McAlevy Bubb, D.-D.; Haglund, R.F., Jr. Resonant Infrared Pulsed Laser Ablation and Deposition of Thin Polymer Films. In Pulsed Laser Deposition of Thin Films; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 33–61. ISBN 978-0-470-05212-9. [Google Scholar]
- Dholakia, K.; Simpson, N.B.; Padgett, M.J.; Allen, L. Second-Harmonic Generation and the Orbital Angular Momentum of Light. Phys. Rev. A 1996, 54, R3742–R3745. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Z.-Y.; Ding, D.-S.; Shi, B.-S. Sum Frequency Generation with Two Orbital Angular Momentum Carrying Laser Beams. J. Opt. Soc. Am. B 2015, 32, 407–411. [Google Scholar] [CrossRef]
- Sujian, N.; Aierken, P.; Tuersun, P.; Ying, W.; Yusufu, T. Highly Efficient Millijoule-Level 3.5 Μm MgO-Doped Periodically Poled Lithium Niobate Optical Parametric Oscillator. Jpn. J. Appl. Phys. 2017, 57, 010304. [Google Scholar] [CrossRef]
- Niu, S.; Aierken, P.; Ababaike, M.; Wang, S.; Yusufu, T. Widely Tunable, High-Energy, Mid-Infrared (2.2–4.8 µm) Laser Based on a Multi-Grating MgO:PPLN Optical Parametric Oscillator. Infrared Phys. Technol. 2020, 104, 103121. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, J.; Duan, Y.; Zhang, J.; Zhang, Y.; Xu, C.; Wang, H.; Fan, D. Efficient 1.7 Μm Light Source Based on KTA-OPO Derived by Nd:YVO4 Self-Raman Laser. Opt. Lett. 2018, 43, 345–348. [Google Scholar] [CrossRef]
- Abulikemu, A.; Yakufu, S.; Zhou, Y.X.; Yusufu, T. Mid-Infrared Idler-Resonant Optical Vortex Parametric Oscillator Based on MgO:PPLN. Opt. Laser Technol. 2024, 171, 110341. [Google Scholar] [CrossRef]
- Baumgartner, R.; Byer, R. Optical Parametric Amplification. IEEE J. Quantum Electron. 1979, 15, 432–444. [Google Scholar] [CrossRef]
- Lee, A.J.; Omatsu, T.; Pask, H.M. Direct Generation of a First-Stokes Vortex Laser Beam from a Self-Raman Laser. Opt. Express 2013, 21, 12401–12409. [Google Scholar] [CrossRef]
- Piccoli, R.; Pirzio, F.; Agnesi, A.; Badikov, V.; Badikov, D.; Marchev, G.; Panyutin, V.; Petrov, V. Narrow Bandwidth, Picosecond, 1064 Nm Pumped Optical Parametric Generator for the Mid-IR Based on HgGa2S4. Opt. Lett. 2014, 39, 4895–4898. [Google Scholar] [CrossRef]
- Marchev, G.; Pirzio, F.; Piccoli, R.; Agnesi, A.; Reali, G.; Schunemann, P.G.; Zawilski, K.T.; Tyazhev, A.; Petrov, V. Narrow-Bandwidth, ~100 Ps Seeded Optical Parametric Generation in CdSiP2 Pumped by Raman-Shifted Pulses at 1198 Nm. Opt. Lett. 2013, 38, 3344–3346. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chan, H.-Y.; Alam, S.; Richardson, D.J.; Shepherd, D.P. High-Energy, near- and Mid-IR Picosecond Pulses Generated by a Fiber-MOPA-Pumped Optical Parametric Generator and Amplifier. Opt. Express 2015, 23, 12613–12618. [Google Scholar] [CrossRef] [PubMed]
- Patterson, W.; Bigotta, S.; Sheik-Bahae, M.; Parisi, D.; Tonelli, M.; Epstein, R. Anti-Stokes Luminescence Cooling of Tm3+Doped BaY2F8. Opt. Express 2008, 16, 1704–1710. [Google Scholar] [CrossRef] [PubMed]
- Baron, A.; Ryasnyanskiy, A.; Dubreuil, N.; Delaye, P.; Tran, Q.V.; Combrié, S.; de Rossi, A.; Frey, R.; Roosen, G. Light Localization Induced Enhancement of Third Order Nonlinearities in a GaAs Photonic Crystal Waveguide. Opt. Express 2009, 17, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Zhong, K.; Mei, J.; Liu, Y.; Qiao, H.; Liu, K.; Xu, D.; Yao, J. Widely Tunable Eye-Safe Optical Parametric Oscillator with Noncollinear Phase-Matching in a Ring Cavity. Opt. Express 2019, 27, 10449–10455. [Google Scholar] [CrossRef] [PubMed]
- Schellhorn, M.; Spindler, G.; Eichhorn, M. Mid-Infrared ZGP OPO with Divergence Compensation and High Beam Quality. Opt. Express 2018, 26, 1402–1410. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.; Padhye, A.; Sukeert; Ebrahim-Zadeh, M. Widely Tunable Room-Temperature Continuous-Wave Optical Parametric Oscillator Based on Periodically-Poled KTiOPO4. Opt. Express 2019, 27, 24093–24104. [Google Scholar] [CrossRef]
- Lü, X.; Zhao, G.; Li, G.; Gao, Z.; Pan, S.; Zhu, S. Mid-Infrared Laser with 1.2 W Output Power Based on PPLT. Sci. China Phys. Mech. Astron. 2010, 53, 638–642. [Google Scholar] [CrossRef]
- Kienle, F.; Chen, K.K.; Alam, S.; Gawith, C.B.E.; Mackenzie, J.I.; Hanna, D.C.; Richardson, D.J.; Shepherd, D.P. High-Power, Variable Repetition Rate, Picosecond Optical Parametric Oscillator Pumped by an Amplified Gain-Switched Diode. Opt. Express 2010, 18, 7602–7610. [Google Scholar] [CrossRef]
- Kokabee, O.; Esteban-Martin, A.; Ebrahim-Zadeh, M. Efficient, High-Power, Ytterbium-Fiber-Laser-Pumped Picosecond Optical Parametric Oscillator. Opt. Lett. 2010, 35, 3210–3212. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chan, H.-Y.; Alam, S.U.; Richardson, D.J.; Shepherd, D.P. Fiber-Laser-Pumped, High-Energy, Mid-IR, Picosecond Optical Parametric Oscillator with a High-Harmonic Cavity. Opt. Lett. 2015, 40, 3288–3291. [Google Scholar] [CrossRef] [PubMed]
- Nandy, B.; Kumar, S.C.; Ebrahim-Zadeh, M. Yb-Fiber-Pumped High-Average-Power Picosecond Optical Parametric Oscillator Tunable across 1.3−1.5 Μm. Opt. Express 2022, 30, 16340–16350. [Google Scholar] [CrossRef]
- Kumar, S.C.; Ebrahim-Zadeh, M. High-Power, Fiber-Laser-Pumped, Picosecond Optical Parametric Oscillator Based on MgO:sPPLT. Opt. Express 2011, 19, 26660–26665. [Google Scholar] [CrossRef]
- Kumar, S.C.; Ebrahim-Zadeh, M. Fiber-Laser-Based Green-Pumped Picosecond MgO:sPPLT Optical Parametric Oscillator. Opt. Lett. 2013, 38, 5349–5352. [Google Scholar] [CrossRef]
- Kumar, S.C.; Parsa, S.; Ebrahim-Zadeh, M. Fiber-Laser-Based, Green-Pumped, Picosecond Optical Parametric Oscillator Using Fan-out Grating PPKTP. Opt. Lett. 2016, 41, 52–55. [Google Scholar] [CrossRef]
- Kienle, F.; Teh, P.S.; Lin, D.; Alam, S.; Price, J.H.V.; Hanna, D.C.; Richardson, D.J.; Shepherd, D.P. High-Power, High Repetition-Rate, Green-Pumped, Picosecond LBO Optical Parametric Oscillator. Opt. Express 2012, 20, 7008–7014. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.H.; Gao, X.M.; Cao, Z.S.; Chen, W.D.; Yuan, Y.Q.; Zhang, W.J.; Gong, Z.B. Improvement to Sellmeier Equation for Periodically Poled LiNbO3 Crystal Using Mid-Infrared Difference-Frequency Generation. Opt. Commun. 2006, 268, 110–114. [Google Scholar] [CrossRef]
- Niu, S.J.; Wang, S.T.; Ababaike, M.; Yusufu, T.; Miyamoto, K.; Omatsu, T. Tunable near- and mid-infrared (1.36–1.63 µm and 3.07–4.81 µm) optical vortex laser source. Laser Phys. Lett. 2020, 17, 045402. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aihemaiti, M.; Jashaner, D.; Yang, X.; Li, Z.; Yusufu, T. Near to Mid-Infrared (1.3–5 μm) Widely Tunable, High Power Picosecond Pulsed Laser. Appl. Sci. 2024, 14, 2383. https://doi.org/10.3390/app14062383
Aihemaiti M, Jashaner D, Yang X, Li Z, Yusufu T. Near to Mid-Infrared (1.3–5 μm) Widely Tunable, High Power Picosecond Pulsed Laser. Applied Sciences. 2024; 14(6):2383. https://doi.org/10.3390/app14062383
Chicago/Turabian StyleAihemaiti, Mailikeguli, Dana Jashaner, Xining Yang, Zhaoxue Li, and Taximaiti Yusufu. 2024. "Near to Mid-Infrared (1.3–5 μm) Widely Tunable, High Power Picosecond Pulsed Laser" Applied Sciences 14, no. 6: 2383. https://doi.org/10.3390/app14062383
APA StyleAihemaiti, M., Jashaner, D., Yang, X., Li, Z., & Yusufu, T. (2024). Near to Mid-Infrared (1.3–5 μm) Widely Tunable, High Power Picosecond Pulsed Laser. Applied Sciences, 14(6), 2383. https://doi.org/10.3390/app14062383