Electron Absorbed Fractions and S Factors for Intermediate Size Target Volumes: Comparison of Analytic Calculations and Monte Carlo Simulations
Abstract
1. Introduction
2. Materials and Methods
2.1. MIRD Range–Energy Relations
2.2. New Range–Energy Relations
2.3. MIRDcell Software
2.4. Geant4 Configuration
2.4.1. Geant4-Livermore
2.4.2. Geant4-Penelope
2.4.3. Geant4-Standard Option 4
2.4.4. Geant4 Simulations
3. Results
3.1. Range
3.2. Absorbed Fraction (AF) Calculations
3.3. S Factor
3.4. Geant4 Monte Carlo Calculations
3.4.1. Effect of Step Length (SL)
3.4.2. Effect of Cut-Off Energy (CE)
3.4.3. Effect of Geant4 Ionization Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sgouros, G.; Bolch, W.E.; Chiti, A.; Dewaraja, Y.K.; Emfietzoglou, D.; Hobbs, R.F.; Konijnenberg, M.; Sjögreen-Gleisner, K.; Strigari, L.; Yen, T.-C.; et al. ICRU REPORT 96, Dosimetry-Guided Radiopharmaceutical Therapy. J. ICRU 2021, 21, 1–212. [Google Scholar] [CrossRef]
- Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical Therapy in Cancer: Clinical Advances and Challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608. [Google Scholar] [CrossRef] [PubMed]
- St. James, S.; Bednarz, B.; Benedict, S.; Buchsbaum, J.C.; Dewaraja, Y.; Frey, E.; Hobbs, R.; Grudzinski, J.; Roncali, E.; Sgouros, G.; et al. Current Status of Radiopharmaceutical Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Stokke, C.; Kvassheim, M.; Blakkisrud, J. Radionuclides for Targeted Therapy: Physical Properties. Molecules 2022, 27, 5429. [Google Scholar] [CrossRef]
- Bardiès, M.; Myers, M.J. Computational Methods in Radionuclide Dosimetry. Phys. Med. Biol. 1996, 41, 1941–1955. [Google Scholar] [CrossRef] [PubMed]
- Brownell, G.L.; Ellett, W.H.; Reddy, A.R. MIRD Pamphlet No. 3: Absorbed Fractions for Photon Dosimetry. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 1968, 9 (Suppl. S1), 27–39. [Google Scholar]
- Snyder, W.S. MIRD Pamphlet No. 5: Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom. J. Nucl. Med. 1969, 10, 1. [Google Scholar]
- Ellett, W.H.; Humes, R.M. MIRD Pamphlet No. 8: Absorbed Fractions for Small Volumes Containing Photon-Emitting Radioactivity. J. Nucl. Med. 1971, 12 (Suppl. S5), 25–32. [Google Scholar]
- Snyder, W.; Ford; Warner, G.; Watson, S. MIRD Pamphlet No. 11: S, Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs. Soc. Nucl. Medicie 1975. [Google Scholar]
- Coffey, J.L.; Cristy, M.; Warner, G.G. MIRD Pamphlet No. 13: Specific Absorbed Fractions for Photon Sources Uniformly Distributed in the Heart Chambers and Heart Wall of a Heterogeneous Phantom. J. Nucl. Med. 1981, 22, 65–71. [Google Scholar]
- Bouchet, L.G.; Bolch, W.E.; Weber, D.A.; Atkins, H.L.; Poston, J.W. Mird Pamphlet No. 15: Radionuclide S Values in a Revised Dosimetrie Model of the Adult Head and Brain. J. Nucl. Med. 1999, 40, 62S–101S. [Google Scholar]
- Bolch, W.E.; Bouchet, L.G.; Robertson, J.S.; Wessels, B.W.; Siegel, J.A.; Howell, R.W.; Erdi, A.K.; Aydogan, B.; Costes, S.; Watson, E.E. MIRD Pamphlet No. 17: The Dosimetry of Nonuniform Activity Distributions—Radionuclide S Values at the Voxel Level. J. Nucl. Med. 1999, 40, 11S–36S. [Google Scholar] [PubMed]
- Bouchet, L.G.; Bolch, W.E.; Blanco, H.P.; Wessels, B.W.; Siegel, J.A.; Rajon, D.A.; Clairand, I.; Sgouros, G. MIRD Pamphlet No. 19: Absorbed Fractions and Radionuclide S Values for Six Age-Dependent Multiregion Models of the Kidney. J. Nucl. Med. 2003, 44, 1113–1147. [Google Scholar] [PubMed]
- Berger, M.J. Improved Point Kernels for Electron and Beta-Ray Dosimetry; National Bureau of Standards: Gaithersburg, MD, USA, 1973. [Google Scholar]
- Simpkin, D.J.; Mackie, T.R. EGS4 Monte Carlo Determination of the Beta Dose Kernel in Water. Med. Phys. 1990, 17, 179–186. [Google Scholar] [CrossRef]
- Ferrer, L.; Chouin, N.; Bitar, A.; Lisbona, A.; Bardiès, M. Implementing Dosimetry in GATE: Dose-Point Kernel Validation with GEANT4 4.8.1. Cancer Biother. Radiopharm. 2007, 22, 125–129. [Google Scholar] [CrossRef]
- Seltzer, S.M. Electron-Photon Monte Carlo Calculations: The ETRAN Code. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1991, 42, 917–941. [Google Scholar] [CrossRef]
- Kawrakow, I. The EGSnrc Code System, Monte Carlo Simulation of Electron and Photon Transport. NRCC Rep. Pirs-701 2001. [Google Scholar]
- Briesmeister, J.F. MCNP-A General Monte Carlo Code for Neutron and Photon Transport. In LA-7396-M 3A; Los Alamos National Laboratory: Los Alamos, NM, USA, 1986. [Google Scholar]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A Simulation Toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Bolch, W.E.; Kim, E.-H. Calculations of Electron Single Event Distributions for Use in Internal Beta Microdosimetry. Radiat. Prot. Dosim. 1994, 52, 77–80. [Google Scholar] [CrossRef]
- Nikjoo, H.; Martin, R.F.; Charlton, D.E.; Terrissol, M.; Kandaiya, S.; Lobachevsky, P. Modelling of Auger-Induced Dna Damage by Incorporated 125I. Acta Oncol. 1996, 35, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Torres-García, E.; Garnica-Garza, H.M.; Ferro-Flores, G. Monte Carlo Microdosimetry of 188Re- and 131I-Labelled Anti-CD20. Phys. Med. Biol. 2006, 51, N349–N356. [Google Scholar] [CrossRef]
- Emfietzoglou, D.; Kostarelos, K.; Hadjidoukas, P.; Bousis, C.; Fotopoulos, A.; Pathak, A.; Nikjoo, H. Subcellular S-Factors for Low-Energy Electrons: A Comparison of Monte Carlo Simulations and Continuous-Slowing-down Calculations. Int. J. Radiat. Biol. 2008, 84, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Šefl, M.; Incerti, S.; Papamichael, G.; Emfietzoglou, D. Calculation of Cellular S-Values Using Geant4-DNA: The Effect of Cell Geometry. Appl. Radiat. Isot. 2015, 104, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S. Radiation Track, DNA Damage and Response—A Review. Rep. Prog. Phys. 2016, 79, 116601. [Google Scholar] [CrossRef] [PubMed]
- Dingfelder, M.; Ritchie, R.H.; Turner, J.E.; Friedland, W.; Paretzke, H.G.; Hamm, R.N. Comparisons of Calculations with PARTRAC and NOREC: Transport of Electrons in Liquid Water. Radiat. Res. 2008, 169, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Incerti, S.; Kyriakou, I.; Bernal, M.A.; Bordage, M.C.; Francis, Z.; Guatelli, S.; Ivanchenko, V.; Karamitros, M.; Lampe, N.; Lee, S.B.; et al. Geant4-DNA Example Applications for Track Structure Simulations in Liquid Water: A Report from the Geant4-DNA Project. Med. Phys. 2018, 45, e722–e739. [Google Scholar] [CrossRef] [PubMed]
- Bernal, M.A.; Bordage, M.C.; Brown, J.M.C.; Davídková, M.; Delage, E.; El Bitar, Z.; Enger, S.A.; Francis, Z.; Guatelli, S.; Ivanchenko, V.N.; et al. Track Structure Modeling in Liquid Water: A Review of the Geant4-DNA Very Low Energy Extension of the Geant4 Monte Carlo Simulation Toolkit. Phys. Medica 2015, 31, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Incerti, S.; Ivanchenko, A.; Karamitros, M.; Mantero, A.; Moretto, P.; Tran, H.N.; Mascialino, B.; Champion, C.; Ivanchenko, V.N.; Bernal, M.A.; et al. Comparison of GEANT4 Very Low Energy Cross Section Models with Experimental Data in Water. Med. Phys. 2010, 37, 4692–4708. [Google Scholar] [CrossRef] [PubMed]
- Incerti, S.; Baldacchino, G.; Bernal, M.; Capra, R.; Champion, C.; Francis, Z.; Guèye, P.; Mantero, A.; Mascialino, B.; Moretto, P.; et al. The GEANT4-DNA Project. Int. J. Model. Simul. Sci. Comput. 2010, 01, 157–178. [Google Scholar] [CrossRef]
- Kyriakou, I.; Sakata, D.; Tran, H.N.; Perrot, Y.; Shin, W.-G.; Lampe, N.; Zein, S.; Bordage, M.C.; Guatelli, S.; Villagrasa, C.; et al. Review of the Geant4-DNA Simulation Toolkit for Radiobiological Applications at the Cellular and DNA Level. Cancers 2021, 14, 35. [Google Scholar] [CrossRef]
- Berger, M.J. MIRD Pamphlet No. 2: Energy Deposition in Water by Photons from Point Isotropic Sources. J. Nucl. Med. 1968, 9 (Suppl. S1), 15–25. [Google Scholar]
- Berger, M.J. MIRD Pamphlet No. 7: Distribution of Absorbed Dose around Point Sources of Electrons and Beta Particles in Water and Other Media. J. Nucl. Med. 1971, 12 (Suppl. S5), 5–23. [Google Scholar]
- Berger, M.J. Beta-Ray Dosimetry Calculations with the Use of Point Kernels. In Radiation Dose and Effects; United States Atomic Energy Commission: Washington, DC, USA, 1970; pp. 63–86. [Google Scholar]
- Siegel, J.A.; Stabin, M.G. Absorbed Fractions for Electrons and Beta Particles in Spheres of Various Sizes. J. Nucl. Med. 1994, 35, 152–156. [Google Scholar] [PubMed]
- Stabin, M.G.; Konijnenberg, M.W. Re-Evaluation of Absorbed Fractions for Photons and Electrons in Spheres of Various Sizes. J. Nucl. Med. 2000, 41, 149–160. [Google Scholar] [PubMed]
- Amato, E.; Lizio, D.; Baldari, S. Absorbed Fractions for Electrons in Ellipsoidal Volumes. Phys. Med. Biol. 2011, 56, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Olguin, E.; President, B.; Ghaly, M.; Frey, E.; Sgouros, G.; Bolch, W.E. Specific Absorbed Fractions and Radionuclide S-Values for Tumors of Varying Size and Composition. Phys. Med. Biol. 2020, 65, 235015. [Google Scholar] [CrossRef] [PubMed]
- Stabin, M. Nuclear Medicine Dosimetry. Phys. Med. Biol. 2006, 51, R187–R202. [Google Scholar] [CrossRef] [PubMed]
- Goddu, S.M.; Budinger, T.F. (Eds.) MIRD Cellular S. Values: Self-Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Monoenergetic Electron and Alpha Particle Emitters Incorporated into Different Cell Compartments; Society of Nuclear Medicine: Reston, VA, USA, 2003; ISBN 978-0-932004-46-8. [Google Scholar]
- Cole, A. Absorption of 20-eV to 50,000-eV Electron Beams in Air and Plastic. Radiat. Res. 1969, 38, 7. [Google Scholar] [CrossRef] [PubMed]
- Howell, R.W.; Rao, D.V.; Sastry, K.S.R. Macroscopic Dosimetry for Radioimmunotherapy: Nonuniform Activity Distributions in Solid Tumors. Med. Phys. 1989, 16, 66–74. [Google Scholar] [CrossRef]
- Vaziri, B.; Wu, H.; Dhawan, A.P.; Du, P.; Howell, R.W. In collaboration with the SNMMI MIRD Committee: MIRD Pamphlet No. 25: MIRDcell V2.0 Software Tool for Dosimetric Analysis of Biologic Response of Multicellular Populations. J. Nucl. Med. 2014, 55, 1557–1564. [Google Scholar] [CrossRef]
- Goddu, S.M.; Howell, R.W.; Rao, D.V. Cellular Dosimetry: Absorbed Fractions for Monoenergetic Electron and Alpha Particle Sources and S-Values for Radionuclides Uniformly Distributed in Different Cell Compartments. J. Nucl. Med. 1994, 35, 303–316. [Google Scholar]
- Apostolakis, J.; Asai, M.; Bogdanov, A.G.; Burkhardt, H.; Cosmo, G.; Elles, S.; Folger, G.; Grichine, V.M.; Gumplinger, P.; Heikkinen, A.; et al. Geometry and Physics of the Geant4 Toolkit for High and Medium Energy Applications. Radiat. Phys. Chem. 2009, 78, 859–873. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent Developments in Geant4. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce Dubois, P.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 Developments and Applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Chetty, I.J.; Curran, B.; Cygler, J.E.; DeMarco, J.J.; Ezzell, G.; Faddegon, B.A.; Kawrakow, I.; Keall, P.J.; Liu, H.; Ma, C.-M.C.; et al. Report of the AAPM Task Group No. 105: Issues Associated with Clinical Implementation of Monte Carlo-based Photon and Electron External Beam Treatment Planning. Med. Phys. 2007, 34, 4818–4853. [Google Scholar] [CrossRef] [PubMed]
- Chauvie, S.; Guatelli, S.; Ivanchenko, V.; Longo, F.; Mantero, A.; Mascialino, B.; Nieminen, P.; Pandola, L.; Parlati, S.; Peralta, L.; et al. Geant4 Low Energy Electromagnetic Physics. In Proceedings of the IEEE Symposium Conference Record Nuclear Science 2004, Rome, Italy, 16–22 October 2004; IEEE: Rome, Italy, 2004; Volume 3, pp. 1881–1885. [Google Scholar]
- Kyriakou, I.; Ivanchenko, V.; Sakata, D.; Bordage, M.C.; Guatelli, S.; Incerti, S.; Emfietzoglou, D. Influence of Track Structure and Condensed History Physics Models of Geant4 to Nanoscale Electron Transport in Liquid Water. Phys. Medica 2019, 58, 149–154. [Google Scholar] [CrossRef]
- Cullen, D.E.; Hubbell, J.H.; Kissel, L. EPDL97: The Evaluated Photo Data Library97 Version; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 1997. [Google Scholar]
- Perkins, S.T.; Cullen, D.E.; Chen, M.H.; Rathkopf, J.; Scofield, J.; Hubbell, J.H. Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z = 1–100; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 1991. [Google Scholar]
- Perkins, S.T.; Cullen, D.E.; Seltzer, S.M. Tables and Graphs of Electron-Interaction Cross-Sections from 10 eV to 100 GeV Derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1–100. UCRL-50400 1991, 31, 21–24. [Google Scholar]
- Ivanchenko, V.N.; Kadri, O.; Maire, M.; Urban, L. Geant4 Models for Simulation of Multiple Scattering. J. Phys. Conf. Ser. 2010, 219, 032045. [Google Scholar] [CrossRef]
- Kyriakou, I.; Emfietzoglou, D.; Ivanchenko, V.; Bordage, M.C.; Guatelli, S.; Lazarakis, P.; Tran, H.N.; Incerti, S. Microdosimetry of Electrons in Liquid Water Using the Low-Energy Models of Geant4. J. Appl. Phys. 2017, 122, 024303. [Google Scholar] [CrossRef]
- Salvat, F.; Fernández-Varea, J.M.; Sempau, J. PENELOPE-2006: A Code System for Monte Carlo Simulation of Electron and Photon Transport. In Workshop Proceedings; Nuclear Energy Agency, Organization for Economic Co-operation and Development: Barcelona, Spain, 2006; Volume 4, p. 7. [Google Scholar]
- Liljequist, D. A Simple Calculation of Inelastic Mean Free Path and Stopping Power for 50 eV-50 keV Electrons in Solids. J. Phys. D Appl. Phys. 1983, 16, 1567–1582. [Google Scholar] [CrossRef]
- Kadri, O.; Ivanchenko, V.; Gharbi, F.; Trabelsi, A. Incorporation of the Goudsmit–Saunderson Electron Transport Theory in the Geant4 Monte Carlo Code. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2009, 267, 3624–3632. [Google Scholar] [CrossRef]
- ICRU REPORT 90 Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Applications. J. ICRU 2014, 14, 1–110. [CrossRef] [PubMed]
Geant4 | Standard Option 4 | ||
---|---|---|---|
e-Ionization model | Livermore model for electrons < 100 keV | soft collisions | Stopping power from Weizsacker–Williams cross section |
hard collisions | Weizsacker–Williams ionization cross section | ||
Standard model for electrons > 100 keV | soft collisions | Berger–Seltzer stopping power formula | |
hard collisions | Möller ionization cross section | ||
e-Multiple elastic scattering | Goudsmit–Saunderson model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotroumpelou, C.; Kyriakou, I.; Ivanchenko, V.; Incerti, S.; Emfietzoglou, D. Electron Absorbed Fractions and S Factors for Intermediate Size Target Volumes: Comparison of Analytic Calculations and Monte Carlo Simulations. Appl. Sci. 2024, 14, 2275. https://doi.org/10.3390/app14062275
Kotroumpelou C, Kyriakou I, Ivanchenko V, Incerti S, Emfietzoglou D. Electron Absorbed Fractions and S Factors for Intermediate Size Target Volumes: Comparison of Analytic Calculations and Monte Carlo Simulations. Applied Sciences. 2024; 14(6):2275. https://doi.org/10.3390/app14062275
Chicago/Turabian StyleKotroumpelou, Christina, Ioanna Kyriakou, Vladimir Ivanchenko, Sebastien Incerti, and Dimitris Emfietzoglou. 2024. "Electron Absorbed Fractions and S Factors for Intermediate Size Target Volumes: Comparison of Analytic Calculations and Monte Carlo Simulations" Applied Sciences 14, no. 6: 2275. https://doi.org/10.3390/app14062275
APA StyleKotroumpelou, C., Kyriakou, I., Ivanchenko, V., Incerti, S., & Emfietzoglou, D. (2024). Electron Absorbed Fractions and S Factors for Intermediate Size Target Volumes: Comparison of Analytic Calculations and Monte Carlo Simulations. Applied Sciences, 14(6), 2275. https://doi.org/10.3390/app14062275