Electron Absorbed Fractions and S Factors for Intermediate Size Target Volumes: Comparison of Analytic Calculations and Monte Carlo Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. MIRD Range–Energy Relations
2.2. New Range–Energy Relations
2.3. MIRDcell Software
2.4. Geant4 Configuration
2.4.1. Geant4-Livermore
2.4.2. Geant4-Penelope
2.4.3. Geant4-Standard Option 4
2.4.4. Geant4 Simulations
3. Results
3.1. Range
3.2. Absorbed Fraction (AF) Calculations
3.3. S Factor
3.4. Geant4 Monte Carlo Calculations
3.4.1. Effect of Step Length (SL)
3.4.2. Effect of Cut-Off Energy (CE)
3.4.3. Effect of Geant4 Ionization Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sgouros, G.; Bolch, W.E.; Chiti, A.; Dewaraja, Y.K.; Emfietzoglou, D.; Hobbs, R.F.; Konijnenberg, M.; Sjögreen-Gleisner, K.; Strigari, L.; Yen, T.-C.; et al. ICRU REPORT 96, Dosimetry-Guided Radiopharmaceutical Therapy. J. ICRU 2021, 21, 1–212. [Google Scholar] [CrossRef]
- Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical Therapy in Cancer: Clinical Advances and Challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608. [Google Scholar] [CrossRef] [PubMed]
- St. James, S.; Bednarz, B.; Benedict, S.; Buchsbaum, J.C.; Dewaraja, Y.; Frey, E.; Hobbs, R.; Grudzinski, J.; Roncali, E.; Sgouros, G.; et al. Current Status of Radiopharmaceutical Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Stokke, C.; Kvassheim, M.; Blakkisrud, J. Radionuclides for Targeted Therapy: Physical Properties. Molecules 2022, 27, 5429. [Google Scholar] [CrossRef]
- Bardiès, M.; Myers, M.J. Computational Methods in Radionuclide Dosimetry. Phys. Med. Biol. 1996, 41, 1941–1955. [Google Scholar] [CrossRef] [PubMed]
- Brownell, G.L.; Ellett, W.H.; Reddy, A.R. MIRD Pamphlet No. 3: Absorbed Fractions for Photon Dosimetry. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 1968, 9 (Suppl. S1), 27–39. [Google Scholar]
- Snyder, W.S. MIRD Pamphlet No. 5: Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom. J. Nucl. Med. 1969, 10, 1. [Google Scholar]
- Ellett, W.H.; Humes, R.M. MIRD Pamphlet No. 8: Absorbed Fractions for Small Volumes Containing Photon-Emitting Radioactivity. J. Nucl. Med. 1971, 12 (Suppl. S5), 25–32. [Google Scholar]
- Snyder, W.; Ford; Warner, G.; Watson, S. MIRD Pamphlet No. 11: S, Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs. Soc. Nucl. Medicie 1975. [Google Scholar]
- Coffey, J.L.; Cristy, M.; Warner, G.G. MIRD Pamphlet No. 13: Specific Absorbed Fractions for Photon Sources Uniformly Distributed in the Heart Chambers and Heart Wall of a Heterogeneous Phantom. J. Nucl. Med. 1981, 22, 65–71. [Google Scholar]
- Bouchet, L.G.; Bolch, W.E.; Weber, D.A.; Atkins, H.L.; Poston, J.W. Mird Pamphlet No. 15: Radionuclide S Values in a Revised Dosimetrie Model of the Adult Head and Brain. J. Nucl. Med. 1999, 40, 62S–101S. [Google Scholar]
- Bolch, W.E.; Bouchet, L.G.; Robertson, J.S.; Wessels, B.W.; Siegel, J.A.; Howell, R.W.; Erdi, A.K.; Aydogan, B.; Costes, S.; Watson, E.E. MIRD Pamphlet No. 17: The Dosimetry of Nonuniform Activity Distributions—Radionuclide S Values at the Voxel Level. J. Nucl. Med. 1999, 40, 11S–36S. [Google Scholar] [PubMed]
- Bouchet, L.G.; Bolch, W.E.; Blanco, H.P.; Wessels, B.W.; Siegel, J.A.; Rajon, D.A.; Clairand, I.; Sgouros, G. MIRD Pamphlet No. 19: Absorbed Fractions and Radionuclide S Values for Six Age-Dependent Multiregion Models of the Kidney. J. Nucl. Med. 2003, 44, 1113–1147. [Google Scholar] [PubMed]
- Berger, M.J. Improved Point Kernels for Electron and Beta-Ray Dosimetry; National Bureau of Standards: Gaithersburg, MD, USA, 1973. [Google Scholar]
- Simpkin, D.J.; Mackie, T.R. EGS4 Monte Carlo Determination of the Beta Dose Kernel in Water. Med. Phys. 1990, 17, 179–186. [Google Scholar] [CrossRef]
- Ferrer, L.; Chouin, N.; Bitar, A.; Lisbona, A.; Bardiès, M. Implementing Dosimetry in GATE: Dose-Point Kernel Validation with GEANT4 4.8.1. Cancer Biother. Radiopharm. 2007, 22, 125–129. [Google Scholar] [CrossRef]
- Seltzer, S.M. Electron-Photon Monte Carlo Calculations: The ETRAN Code. Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 1991, 42, 917–941. [Google Scholar] [CrossRef]
- Kawrakow, I. The EGSnrc Code System, Monte Carlo Simulation of Electron and Photon Transport. NRCC Rep. Pirs-701 2001. [Google Scholar]
- Briesmeister, J.F. MCNP-A General Monte Carlo Code for Neutron and Photon Transport. In LA-7396-M 3A; Los Alamos National Laboratory: Los Alamos, NM, USA, 1986. [Google Scholar]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A Simulation Toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Bolch, W.E.; Kim, E.-H. Calculations of Electron Single Event Distributions for Use in Internal Beta Microdosimetry. Radiat. Prot. Dosim. 1994, 52, 77–80. [Google Scholar] [CrossRef]
- Nikjoo, H.; Martin, R.F.; Charlton, D.E.; Terrissol, M.; Kandaiya, S.; Lobachevsky, P. Modelling of Auger-Induced Dna Damage by Incorporated 125I. Acta Oncol. 1996, 35, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Torres-García, E.; Garnica-Garza, H.M.; Ferro-Flores, G. Monte Carlo Microdosimetry of 188Re- and 131I-Labelled Anti-CD20. Phys. Med. Biol. 2006, 51, N349–N356. [Google Scholar] [CrossRef]
- Emfietzoglou, D.; Kostarelos, K.; Hadjidoukas, P.; Bousis, C.; Fotopoulos, A.; Pathak, A.; Nikjoo, H. Subcellular S-Factors for Low-Energy Electrons: A Comparison of Monte Carlo Simulations and Continuous-Slowing-down Calculations. Int. J. Radiat. Biol. 2008, 84, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Šefl, M.; Incerti, S.; Papamichael, G.; Emfietzoglou, D. Calculation of Cellular S-Values Using Geant4-DNA: The Effect of Cell Geometry. Appl. Radiat. Isot. 2015, 104, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S. Radiation Track, DNA Damage and Response—A Review. Rep. Prog. Phys. 2016, 79, 116601. [Google Scholar] [CrossRef] [PubMed]
- Dingfelder, M.; Ritchie, R.H.; Turner, J.E.; Friedland, W.; Paretzke, H.G.; Hamm, R.N. Comparisons of Calculations with PARTRAC and NOREC: Transport of Electrons in Liquid Water. Radiat. Res. 2008, 169, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Incerti, S.; Kyriakou, I.; Bernal, M.A.; Bordage, M.C.; Francis, Z.; Guatelli, S.; Ivanchenko, V.; Karamitros, M.; Lampe, N.; Lee, S.B.; et al. Geant4-DNA Example Applications for Track Structure Simulations in Liquid Water: A Report from the Geant4-DNA Project. Med. Phys. 2018, 45, e722–e739. [Google Scholar] [CrossRef] [PubMed]
- Bernal, M.A.; Bordage, M.C.; Brown, J.M.C.; Davídková, M.; Delage, E.; El Bitar, Z.; Enger, S.A.; Francis, Z.; Guatelli, S.; Ivanchenko, V.N.; et al. Track Structure Modeling in Liquid Water: A Review of the Geant4-DNA Very Low Energy Extension of the Geant4 Monte Carlo Simulation Toolkit. Phys. Medica 2015, 31, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Incerti, S.; Ivanchenko, A.; Karamitros, M.; Mantero, A.; Moretto, P.; Tran, H.N.; Mascialino, B.; Champion, C.; Ivanchenko, V.N.; Bernal, M.A.; et al. Comparison of GEANT4 Very Low Energy Cross Section Models with Experimental Data in Water. Med. Phys. 2010, 37, 4692–4708. [Google Scholar] [CrossRef] [PubMed]
- Incerti, S.; Baldacchino, G.; Bernal, M.; Capra, R.; Champion, C.; Francis, Z.; Guèye, P.; Mantero, A.; Mascialino, B.; Moretto, P.; et al. The GEANT4-DNA Project. Int. J. Model. Simul. Sci. Comput. 2010, 01, 157–178. [Google Scholar] [CrossRef]
- Kyriakou, I.; Sakata, D.; Tran, H.N.; Perrot, Y.; Shin, W.-G.; Lampe, N.; Zein, S.; Bordage, M.C.; Guatelli, S.; Villagrasa, C.; et al. Review of the Geant4-DNA Simulation Toolkit for Radiobiological Applications at the Cellular and DNA Level. Cancers 2021, 14, 35. [Google Scholar] [CrossRef]
- Berger, M.J. MIRD Pamphlet No. 2: Energy Deposition in Water by Photons from Point Isotropic Sources. J. Nucl. Med. 1968, 9 (Suppl. S1), 15–25. [Google Scholar]
- Berger, M.J. MIRD Pamphlet No. 7: Distribution of Absorbed Dose around Point Sources of Electrons and Beta Particles in Water and Other Media. J. Nucl. Med. 1971, 12 (Suppl. S5), 5–23. [Google Scholar]
- Berger, M.J. Beta-Ray Dosimetry Calculations with the Use of Point Kernels. In Radiation Dose and Effects; United States Atomic Energy Commission: Washington, DC, USA, 1970; pp. 63–86. [Google Scholar]
- Siegel, J.A.; Stabin, M.G. Absorbed Fractions for Electrons and Beta Particles in Spheres of Various Sizes. J. Nucl. Med. 1994, 35, 152–156. [Google Scholar] [PubMed]
- Stabin, M.G.; Konijnenberg, M.W. Re-Evaluation of Absorbed Fractions for Photons and Electrons in Spheres of Various Sizes. J. Nucl. Med. 2000, 41, 149–160. [Google Scholar] [PubMed]
- Amato, E.; Lizio, D.; Baldari, S. Absorbed Fractions for Electrons in Ellipsoidal Volumes. Phys. Med. Biol. 2011, 56, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Olguin, E.; President, B.; Ghaly, M.; Frey, E.; Sgouros, G.; Bolch, W.E. Specific Absorbed Fractions and Radionuclide S-Values for Tumors of Varying Size and Composition. Phys. Med. Biol. 2020, 65, 235015. [Google Scholar] [CrossRef] [PubMed]
- Stabin, M. Nuclear Medicine Dosimetry. Phys. Med. Biol. 2006, 51, R187–R202. [Google Scholar] [CrossRef] [PubMed]
- Goddu, S.M.; Budinger, T.F. (Eds.) MIRD Cellular S. Values: Self-Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Monoenergetic Electron and Alpha Particle Emitters Incorporated into Different Cell Compartments; Society of Nuclear Medicine: Reston, VA, USA, 2003; ISBN 978-0-932004-46-8. [Google Scholar]
- Cole, A. Absorption of 20-eV to 50,000-eV Electron Beams in Air and Plastic. Radiat. Res. 1969, 38, 7. [Google Scholar] [CrossRef] [PubMed]
- Howell, R.W.; Rao, D.V.; Sastry, K.S.R. Macroscopic Dosimetry for Radioimmunotherapy: Nonuniform Activity Distributions in Solid Tumors. Med. Phys. 1989, 16, 66–74. [Google Scholar] [CrossRef]
- Vaziri, B.; Wu, H.; Dhawan, A.P.; Du, P.; Howell, R.W. In collaboration with the SNMMI MIRD Committee: MIRD Pamphlet No. 25: MIRDcell V2.0 Software Tool for Dosimetric Analysis of Biologic Response of Multicellular Populations. J. Nucl. Med. 2014, 55, 1557–1564. [Google Scholar] [CrossRef]
- Goddu, S.M.; Howell, R.W.; Rao, D.V. Cellular Dosimetry: Absorbed Fractions for Monoenergetic Electron and Alpha Particle Sources and S-Values for Radionuclides Uniformly Distributed in Different Cell Compartments. J. Nucl. Med. 1994, 35, 303–316. [Google Scholar]
- Apostolakis, J.; Asai, M.; Bogdanov, A.G.; Burkhardt, H.; Cosmo, G.; Elles, S.; Folger, G.; Grichine, V.M.; Gumplinger, P.; Heikkinen, A.; et al. Geometry and Physics of the Geant4 Toolkit for High and Medium Energy Applications. Radiat. Phys. Chem. 2009, 78, 859–873. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent Developments in Geant4. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce Dubois, P.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 Developments and Applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Chetty, I.J.; Curran, B.; Cygler, J.E.; DeMarco, J.J.; Ezzell, G.; Faddegon, B.A.; Kawrakow, I.; Keall, P.J.; Liu, H.; Ma, C.-M.C.; et al. Report of the AAPM Task Group No. 105: Issues Associated with Clinical Implementation of Monte Carlo-based Photon and Electron External Beam Treatment Planning. Med. Phys. 2007, 34, 4818–4853. [Google Scholar] [CrossRef] [PubMed]
- Chauvie, S.; Guatelli, S.; Ivanchenko, V.; Longo, F.; Mantero, A.; Mascialino, B.; Nieminen, P.; Pandola, L.; Parlati, S.; Peralta, L.; et al. Geant4 Low Energy Electromagnetic Physics. In Proceedings of the IEEE Symposium Conference Record Nuclear Science 2004, Rome, Italy, 16–22 October 2004; IEEE: Rome, Italy, 2004; Volume 3, pp. 1881–1885. [Google Scholar]
- Kyriakou, I.; Ivanchenko, V.; Sakata, D.; Bordage, M.C.; Guatelli, S.; Incerti, S.; Emfietzoglou, D. Influence of Track Structure and Condensed History Physics Models of Geant4 to Nanoscale Electron Transport in Liquid Water. Phys. Medica 2019, 58, 149–154. [Google Scholar] [CrossRef]
- Cullen, D.E.; Hubbell, J.H.; Kissel, L. EPDL97: The Evaluated Photo Data Library97 Version; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 1997. [Google Scholar]
- Perkins, S.T.; Cullen, D.E.; Chen, M.H.; Rathkopf, J.; Scofield, J.; Hubbell, J.H. Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), Z = 1–100; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 1991. [Google Scholar]
- Perkins, S.T.; Cullen, D.E.; Seltzer, S.M. Tables and Graphs of Electron-Interaction Cross-Sections from 10 eV to 100 GeV Derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1–100. UCRL-50400 1991, 31, 21–24. [Google Scholar]
- Ivanchenko, V.N.; Kadri, O.; Maire, M.; Urban, L. Geant4 Models for Simulation of Multiple Scattering. J. Phys. Conf. Ser. 2010, 219, 032045. [Google Scholar] [CrossRef]
- Kyriakou, I.; Emfietzoglou, D.; Ivanchenko, V.; Bordage, M.C.; Guatelli, S.; Lazarakis, P.; Tran, H.N.; Incerti, S. Microdosimetry of Electrons in Liquid Water Using the Low-Energy Models of Geant4. J. Appl. Phys. 2017, 122, 024303. [Google Scholar] [CrossRef]
- Salvat, F.; Fernández-Varea, J.M.; Sempau, J. PENELOPE-2006: A Code System for Monte Carlo Simulation of Electron and Photon Transport. In Workshop Proceedings; Nuclear Energy Agency, Organization for Economic Co-operation and Development: Barcelona, Spain, 2006; Volume 4, p. 7. [Google Scholar]
- Liljequist, D. A Simple Calculation of Inelastic Mean Free Path and Stopping Power for 50 eV-50 keV Electrons in Solids. J. Phys. D Appl. Phys. 1983, 16, 1567–1582. [Google Scholar] [CrossRef]
- Kadri, O.; Ivanchenko, V.; Gharbi, F.; Trabelsi, A. Incorporation of the Goudsmit–Saunderson Electron Transport Theory in the Geant4 Monte Carlo Code. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2009, 267, 3624–3632. [Google Scholar] [CrossRef]
- ICRU REPORT 90 Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Applications. J. ICRU 2014, 14, 1–110. [CrossRef] [PubMed]
Geant4 | Standard Option 4 | ||
---|---|---|---|
e-Ionization model | Livermore model for electrons < 100 keV | soft collisions | Stopping power from Weizsacker–Williams cross section |
hard collisions | Weizsacker–Williams ionization cross section | ||
Standard model for electrons > 100 keV | soft collisions | Berger–Seltzer stopping power formula | |
hard collisions | Möller ionization cross section | ||
e-Multiple elastic scattering | Goudsmit–Saunderson model |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotroumpelou, C.; Kyriakou, I.; Ivanchenko, V.; Incerti, S.; Emfietzoglou, D. Electron Absorbed Fractions and S Factors for Intermediate Size Target Volumes: Comparison of Analytic Calculations and Monte Carlo Simulations. Appl. Sci. 2024, 14, 2275. https://doi.org/10.3390/app14062275
Kotroumpelou C, Kyriakou I, Ivanchenko V, Incerti S, Emfietzoglou D. Electron Absorbed Fractions and S Factors for Intermediate Size Target Volumes: Comparison of Analytic Calculations and Monte Carlo Simulations. Applied Sciences. 2024; 14(6):2275. https://doi.org/10.3390/app14062275
Chicago/Turabian StyleKotroumpelou, Christina, Ioanna Kyriakou, Vladimir Ivanchenko, Sebastien Incerti, and Dimitris Emfietzoglou. 2024. "Electron Absorbed Fractions and S Factors for Intermediate Size Target Volumes: Comparison of Analytic Calculations and Monte Carlo Simulations" Applied Sciences 14, no. 6: 2275. https://doi.org/10.3390/app14062275
APA StyleKotroumpelou, C., Kyriakou, I., Ivanchenko, V., Incerti, S., & Emfietzoglou, D. (2024). Electron Absorbed Fractions and S Factors for Intermediate Size Target Volumes: Comparison of Analytic Calculations and Monte Carlo Simulations. Applied Sciences, 14(6), 2275. https://doi.org/10.3390/app14062275