Pros and Cons of Strategies to Reduce Greenhouse Gas Emissions from Peatlands: Review of Possibilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Framework for the Study
2.2. Methodology for Qualitative Assessment
- Methane, carbon dioxide, and nitrous emissions from peatlands;
- Strategies to reduce emissions from peatlands;
- Mitigation measures and degraded peatlands;
- Negative side effects of strategies related to emissions, biodiversity, and hydrology functions;
- Potential of peat use in high-added-value products.
3. Literature Review
3.1. Conservation and Restoration Policies and Strategies to Reduce Emissions from Peatlands and Their Side Effects
3.1.1. Policies Related to Peatland Restoration
3.1.2. Peatland Management and Restoration Strategies
- (1)
- Rewetting may cause nutrient leakage in peatlands
- (2)
- Revegetation of peatlands
- (3)
- Topsoil removal of peatlands.
- (4)
- Afforestation of peatlands
- (5)
- Paludiculture
- (6)
- Peatland management to prevent fire
3.2. Peat Processing Technologies and Peat Applications
3.2.1. Technologies and Technological Processes in Peat Processing
3.2.2. The Potential of High Added Value of Peat Products and Materials
- Building materials
- Biocomposites from peat
- Packaging
- Sorbents
- Filtration systems
- Medicine and cosmetics
- Use of Humic acids
- Remediation of degraded soils
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
GHG | Greenhouse gas |
EU | European Union |
UK | United Kingdom |
CO2 | Carbon dioxide |
N2O-N | Nitrous oxide |
CH4 | Methane |
Mt | Megatons |
DOC | Dissolved organic carbon |
Eq. | Equivalents |
References
- Minayeva, T.Y.; Bragg, O.M.; Sirin, A.A. Towards ecosystem-based restoration of peatland biodiversity. Mires Peat 2017, 19, 1–36. [Google Scholar] [CrossRef]
- Littlewood, N.; Anderson, P.; Artz, R.; Bragg, O.; Lunt, P.; Marrs, R. Peatland Biodiversity; IUCN UK Peatland Programme: Edinburgh, UK, 2010; 42p. [Google Scholar]
- Peters, J.; Von Unger, M. Peatlands in the EU Regulatory Environment; Bundesamt für Naturschutz: Bonn, Germany, 2017. [Google Scholar] [CrossRef]
- Khodaei, B.; Hashemi, H.; Salimi, S.; Berndtsson, R. Substantial carbon sequestration by peatlands in temperate areas revealed by InSAR. Environ. Res. Lett. 2023, 18, 044012. [Google Scholar] [CrossRef]
- Lahtinen, L.; Mattila, T.; Myllyviita, T.; Seppälä, J.; Vasander, H. Effects of paludiculture products on reducing greenhouse gas emissions from agricultural peatlands. Ecol. Eng. 2022, 175, 106502. [Google Scholar] [CrossRef]
- Humpenöder, F.; Karstens, K.; Lotze-Campen, H.; Leifeld, J.; Menichetti, L.; Barthelmes, A.; Popp, A. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 2020, 15, 104093. [Google Scholar] [CrossRef]
- Joosten, H. Peatlands, Climate Change Mitigation and Biodiversity Conservation; Nordic Council: Copenhagen, Denmark, 2015. [Google Scholar] [CrossRef]
- Joosten, H.; Sirin, A.; Couwenberg, J.; Laine, J.; Smith, P. The role of peatlands in climate regulation. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice; Cambridge University Press: Cambridge, UK, 2016; pp. 63–76. [Google Scholar] [CrossRef]
- Zhao, J.; Weldon, S.; Barthelmes Swails, E.; Hergoualc’h, K.; Mander, Ü.; Qiu, C.; Connolly, J.; Silver, W.L. Global observation gaps of peatland greenhouse gas balances: Needs and obstacles. Biogeochemistry 2023, 1–16. [Google Scholar] [CrossRef]
- Harenda, K.M.; Lamentowicz, M.; Samson, M.; Chojnicki, B.H. The role of peatlands and their carbon storage function in the context of climate change. In GeoPlanet: Earth and Planetary Sciences; Springer: Cham, Switzerland, 2018; pp. 169–187. [Google Scholar] [CrossRef]
- Vanselow-Algan, M.; Schmidt, S.R.; Greven, M.; Fiencke, C.; Kutzbach, L.; Pfeiffer, E.M. High methane emissions dominated annual greenhouse gas balances 30 years after bog rewetting. Biogeosciences 2015, 12, 4361–4371. [Google Scholar] [CrossRef]
- Minasny, B.; Adetsu, D.V.; Aitkenhead, M.; Artz, R.R.E.; Baggaley, N.; Barthelmes, A.; Beucher, A.; Caron, J.; Conchedda, G.; Connolly, J.; et al. Mapping and monitoring peatland conditions from global to field scale. Biogeochemistry 2023, 1–43. [Google Scholar] [CrossRef]
- Ferré, M.; Muller, A.; Leifeld, J.; Bader, C.; Müller, M.; Engel, S.; Wichmann, S. Sustainable management of cultivated peatlands in Switzerland: Insights, challenges, and opportunities. Land Use Policy 2019, 87, 104019. [Google Scholar] [CrossRef]
- Antala, M.; Juszczak, R.; van der Tol, C.; Rastogi, A. Impact of climate change-induced alterations in peatland vegetation phenology and composition on carbon balance. Sci. Total Environ. 2022, 827, 154294. [Google Scholar] [CrossRef]
- Pertiwi, N.; Tsusaka, T.W.; Sasaki, N.; Gunawan, E. Peatland conservation strategies and carbon pricing possibilities for climate change mitigation in Indonesia: A review. IOP Conf. Ser. Earth Environ. Sci. 2021, 892, 012061. [Google Scholar] [CrossRef]
- Liu, W.; Fritz, C.; van Belle, J.; Nonhebel, S. Production in peatlands: Comparing ecosystem services of different land use options following conventional farming. Sci. Total Environ. 2023, 875, 162534. [Google Scholar] [CrossRef] [PubMed]
- E. Commission—Directorate-General Environment. Peatlands for LIFE. Available online: http://alkfens.kp.org.pl/en/ (accessed on 4 December 2023).
- Pschenyckyj, C.; Riondato, E.; Wilson, D.; Flood, K.; O’driscoll, C.; Renou-Wilson, F. Optimising Water Quality Returns from Peatland Management while Delivering Co-Benefits for Climate and Biodiversity; Report produced for An Fóram Uisce; Fóram Uisce: Nenagh, Ireland, 2021. [Google Scholar]
- He, H.; Roulet, N.T. Improved estimates of carbon dioxide emissions from drained peatlands support a reduction in emission factor. Commun. Earth Environ. 2023, 4, 1–6. [Google Scholar] [CrossRef]
- Buschmann, C.; Röder, N.; Berglund, K.; Berglund, Ö.; Lærke, P.E.; Maddison, M.; Mander, Ü.; Myllys, M. Perspectives on agriculturally used drained peat soils: Comparison of the socioeconomic and ecological business environments of six European regions. Land Use Policy 2020, 90, 104181. [Google Scholar] [CrossRef]
- Strategy for Responsible Peatland Management. 2019. Available online: www.peatlands.org (accessed on 15 November 2023).
- Akinyemi, F. Restoring Peatlands: Evidence-Based Insights for Policymakers. Available online: https://www.researchgate.net/publication/372479468_Restoring_peatlands_Evidence-based_insights_for_policymakers (accessed on 29 December 2023).
- Tanneberger, F.; Moen, A.; Barthelmes, A.; Lewis, E.; Miles, L.; Sirin, A.; Tegetmeyer, C.; Joosten, H. Mires in Europe—Regional diversity, condition and protection. Diversity 2021, 13, 381. [Google Scholar] [CrossRef]
- Peatland in Europe. Available online: https://esdac.jrc.ec.europa.eu/ESDB_Archive/octop/Peatland.html (accessed on 4 December 2023).
- Global Peatlands Assessment: The State of the World’s Peatlands|UNEP—UN Environment Programme. Available online: https://www.unep.org/resources/global-peatlands-assessment-2022 (accessed on 6 September 2023).
- Vanags-Duka, M.; Bārdule, A.; Butlers, A.; Upenieks, E.M.; Lazdiņš, A.; Purviņa, D.; Līcīte, I. GHG Emissions from Drainage Ditches in Peat Extraction Sites and Peatland Forests in Hemiboreal Latvia. Land 2022, 11, 2233. [Google Scholar] [CrossRef]
- Home—Landgræðslan. Available online: https://peatlands.land.is/ (accessed on 4 December 2023).
- Lehtonen, A.; Eyvindson, K.; Härkönen, K.; Leppä, K.; Salmivaara, A.; Peltoniemi, M.; Salminen, O.; Sarkkola, S.; Launiainen, S.; Ojanen, P.; et al. Potential of continuous cover forestry on drained peatlands to increase the carbon sink in Finland. Sci. Rep. 2023, 13, 15510. [Google Scholar] [CrossRef] [PubMed]
- Darusman, T.; Murdiyarso, D.; Anas, I. Effect of rewetting degraded peatlands on carbon fluxes: A meta-analysis. Mitig. Adapt. Strat. Glob. Chang. 2023, 28, 1–20. [Google Scholar] [CrossRef]
- Girkin, N.T.; Burgess, P.J.; Cole, L.; Cooper, H.V.; Honorio, C.E.; Davidson, S.J.; Hannam, J.; Harris, J.; Holman, I.; McCloskey, C.S.; et al. The three-peat challenge: Business as usual, responsible agriculture, and conservation and restoration as management trajectories in global peatlands. Carbon Manag. 2023, 14, 2275578. [Google Scholar] [CrossRef]
- Nordbeck, R.; Hogl, K. National peatland strategies in Europe: Current status, key themes, and challenges. Reg. Environ. Chang. 2024, 24, 1–12. [Google Scholar] [CrossRef]
- Sustainability Concept for Peat Finland Principles of Responsible Peat Production. 2020. Available online: www.vapo.com (accessed on 4 December 2023).
- Krumins Janis, K.M. Potential of Baltic Region Peat in High Added-Value Products and Environmentally Friendly Applications—A Review. 2021. Available online: https://www.researchgate.net/publication/355429347_Potential_of_Baltic_Region_Peat_in_High_Added-value_Products_and_Environmentally_Friendly_Applications_-_A_Review (accessed on 26 June 2023).
- Mander, Ü.; Espenberg, M.; Melling, L.; Kull, A. Peatland restoration pathways to mitigate greenhouse gas emissions and retain peat carbon. Biogeochemistry 2023, 1–21. [Google Scholar] [CrossRef]
- Chen, C.; Loft, L.; Matzdorf, B. Lost in action: Climate friendly use of European peatlands needs coherence and incentive-based policies. Environ. Sci. Policy 2023, 145, 104–115. [Google Scholar] [CrossRef]
- European Parliament; Directorate-General for Internal Policies of the Union; McDonald, H.; Frelih-Larsen, A.; Lóránt, A. Carbon Farming–Making Agriculture Fit for 2030; European Parliament: Strasbourg, France, 2021; Available online: https://data.europa.eu/doi/10.2861/099822 (accessed on 8 January 2024).
- Li, Q.; Gogo, S.; Leroy, F.; Guimbaud, C.; Laggoun-Défarge, F. Response of Peatland CO2 and CH4 Fluxes to Experimental Warming and the Carbon Balance. Front. Earth Sci. 2021, 9, 631368. [Google Scholar] [CrossRef]
- Huang, X.; Silvennoinen, H.; Kløve, B.; Regina, K.; Kandel, T.P.; Piayda, A.; Karki, S.; Lærke, P.E.; Höglind, M. Modelling CO2 and CH4 emissions from drained peatlands with grass cultivation by the BASGRA-BGC model. Sci. Total Environ. 2021, 765, 144385. [Google Scholar] [CrossRef] [PubMed]
- Pönisch, D.L.; Breznikar, A.; Gutekunst, C.N.; Jurasinski, G.; Rehder, G.; Voss, M. Nutrient release and flux dynamics of CO2, CH4, and N2O in a coastal peatland driven by actively induced rewetting with brackish water from the Baltic Sea. Biogeosciences 2023, 20, 295–323. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Truu, J.; Espenberg, M.; Mander, Ü.; Smith, P. Emissions of methane from northern peatlands: A review of management impacts and implications for future management options. Ecol. Evol. 2016, 6, 7080–7102. [Google Scholar] [CrossRef] [PubMed]
- Overview of Greenhouse Gases|US EPA. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 21 October 2023).
- Some Greenhouse Gases Are Stronger than Others|Center for Science Education. Available online: https://scied.ucar.edu/learning-zone/how-climate-works/some-greenhouse-gases-are-stronger-others (accessed on 21 October 2023).
- Pachauri, R.K.; Edenhofer, O.; Elgizouli, I.; Field, C.B.; Howden, M. The Intergovernmental Panel on Climate Change—The Intergovernmental Panel on Climate Change (IPCC) is the United Nations Body for Assessing the Science Related to Climate Change. Available online: http://www.ipcc.ch (accessed on 4 December 2023).
- Wang, Y.; Paul, S.M.; Jocher, M.; Alewell, C.; Leifeld, J. Reduced Nitrous Oxide Emissions from Drained Temperate Agricultural Peatland After Coverage With Mineral Soil. Front. Environ. Sci. 2022, 10, 856599. [Google Scholar] [CrossRef]
- Liu, H.; Wrage-Mönnig, N.; Lennartz, B. Rewetting strategies to reduce nitrous oxide emissions from European peatlands. Commun. Earth Environ. 2020, 1, 1–7. [Google Scholar] [CrossRef]
- International Peat Society. Peatlands and Climate Change; International Peat Society: Quebec, QC, Canada, 2008. [Google Scholar]
- Hirschler, O.; Osterburg, B. Peat extraction, trade and use in Europe: A material flow analysis. Mires Peat 2022, 28, 24. [Google Scholar] [CrossRef]
- Harris, L.I.; Richardson, K.; Bona, K.A.; Davidson, S.J.; Finkelstein, S.A.; Garneau, M.; McLaughlin, J.; Nwaishi, F.; Olefeldt, D.; Packalen, M.; et al. The essential carbon service provided by northern peatlands. Front. Ecol. Environ. 2022, 20, 222–230. [Google Scholar] [CrossRef]
- Monteverde, S.; Healy, M.G.; O’Leary, D.; Daly, E.; Callery, O. Management and rehabilitation of peatlands: The role of water chemistry, hydrology, policy, and emerging monitoring methods to ensure informed decision making. Ecol. Inf. 2022, 69, 101638. [Google Scholar] [CrossRef]
- Van Schaick, J. Best Practice for Peatland Restoration in Norway: The Expert View. Master’s Thesis, Climate Change Management, Bergen, Norway, 2023. Available online: https://hdl.handle.net/11250/3091010 (accessed on 7 November 2023).
- Zak, D.; McInnes, R.J. A call for refining the peatland restoration strategy in Europe. J. Appl. Ecol. 2022, 59, 2698–2704. [Google Scholar] [CrossRef]
- Kreyling, J.; Tanneberger, F.; Jansen, F.; van der Linden, S.; Aggenbach, C.; Blüml, V.; Couwenberg, J.; Emsens, W.J.; Joosten, H.; Klimkowska, A.; et al. Rewetting does not return drained fen peatlands to their old selves. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Moomaw, W.R.; Chmura, G.L.; Davies, G.T.; Finlayson, C.M.; Middleton, B.A.; Natali, S.M.; Perry, J.E.; Roulet, N.; Sutton-Grier, A.E. Wetlands in a Changing Climate: Science, Policy and Management. Wetlands 2018, 38, 183–205. [Google Scholar] [CrossRef]
- De La Haye, A.; Devereux, C.; van Herk, S. Peatlands across Europe: Innovation & Inspiration; Bax & Company: Barcelona, Spain, 2021. [Google Scholar]
- Giannini, V.; Peruzzi, E.; Masciandaro, G.; Doni, S.; Macci, C.; Bonari, E.; Silvestri, N. Comparison among Different Rewetting Strategies of Degraded Agricultural Peaty Soils: Short-Term Effects on Chemical Properties and Ecoenzymatic Activities. Agronomy 2020, 10, 1084. [Google Scholar] [CrossRef]
- Arias, A.; Feijoo, G.; Moreira, M.T. Advancing the European energy transition based on environmental, economic and social justice. Sustain. Prod. Consum. 2023, 43, 77–93. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Sitz, E.D.; Bajwa, S.G.; Barnick, A.R. Evaluation of cattail (Typha spp.) for manufacturing composite panels. Ind. Crop. Prod. 2015, 75, 195–199. [Google Scholar] [CrossRef]
- Krus, M.; Werner, T.; Großkinsky, T.; Georgiev, G. View of A New Load-Bearing Insulation Material Made of Cattail. Acad. J. Civ. Eng. 2015, 33, 666–673. Available online: https://journal.augc.asso.fr/index.php/ajce/article/view/1799/1269 (accessed on 7 November 2023).
- Elena. A Feasibility Study on the Usage of Cattail (Typha spp.) for the Production of Insulation Materials and Bio-Adhesives; Wageningen University and Research Centre: Wageningen, The Netherlands, 2017. [Google Scholar]
- Juutinen, A.; Tolvanen, A.; Saarimaa, M.; Ojanen, P.; Sarkkola, S.; Ahtikoski, A.; Haikarainen, S.; Karhu, J.; Haara, A.; Nieminen, M.; et al. Analysis Cost-effective land-use options of drained peatlands-integrated biophysical-economic modeling approach. Ecol. Econ. 2020, 175, 106704. [Google Scholar] [CrossRef]
- Kasimir, Å.; He, H.; Coria, J.; Nordén, A. Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics. Glob. Chang. Biol. 2018, 24, 3302–3316. [Google Scholar] [CrossRef]
- Günther, A.; Barthelmes, A.; Huth, V.; Joosten, H.; Jurasinski, G.; Koebsch, F.; Couwenberg, J. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 2020, 11, 1644. [Google Scholar] [CrossRef]
- Januar, R.; Sari, E.N.N.; Putra, S. Economic case for sustainable peatland management: A case study in Kahayan-Sebangau Peat Hydrological Unit, Central Kalimantan, Indonesia. Land Use Policy 2023, 131, 106749. [Google Scholar] [CrossRef]
- Evans, B. Economics of Peatlands Conservation, Restoration and Sustainable Management Economics of Peatlands Conservation; Restoration and Sustainable Management Policy Report; SSRN: Rochester, NY, USA, 2021. [Google Scholar]
- Boonman, J.; Hefting, M.M.; Van Huissteden, C.J.A.; Van Den Berg, M.; Van Huissteden, J.; Erkens, G.; Melman, R.; Van Der Velde, Y. Cutting peatland CO2 emissions with water management practices. Biogeosciences 2022, 19, 5707–5727. [Google Scholar] [CrossRef]
- Krimly, T.; Angenendt, E.; Bahrs, E.; Dabbert, S. Global warming potential and abatement costs of different peatland management options: A case study for the Pre-alpine Hill and Moorland in Germany. Agric. Syst. 2016, 145, 1–12. [Google Scholar] [CrossRef]
- Räsänen, A.; Albrecht, E.; Annala, M.; Aro, L.; Laine, A.M.; Maanavilja, L.; Mustajoki, J.; Ronkanen, A.K.; Silvan, N.; Tarvainen, O.; et al. After-use of peat extraction sites—A systematic review of biodiversity, climate, hydrological and social impacts. Sci. Total Environ. 2023, 882, 163583. [Google Scholar] [CrossRef]
- Oestmann, J.; Tiemeyer, B.; Düvel, D.; Grobe, A.; Dettmann, U. Greenhouse Gas Balance of Sphagnum Farming on Highly Decomposed Peat at Former Peat Extraction Sites. Ecosystems 2022, 25, 350–371. [Google Scholar] [CrossRef]
- Konstantinova, E.; Brunina, L.; Persevica, A. Sustainable management of peat extraction fields. Vide. Tehnologija. Resur. Environ. Technol. Resour. 2019, 1, 114–117. [Google Scholar] [CrossRef]
- Harpenslager, S.F.; van den Elzen, E.; Kox, M.A.R.; Smolders, A.J.P.; Ettwig, K.F.; Lamers, L.P.M. Rewetting former agricultural peatlands: Topsoil removal as a prerequisite to avoid strong nutrient and greenhouse gas emissions. Ecol. Eng. 2015, 84, 159–168. [Google Scholar] [CrossRef]
- Purola, T.; Lehtonen, H. Farm-Level Effects of Emissions Tax and Adjustable Drainage on Peatlands. Environ. Manag. 2022, 69, 154. [Google Scholar] [CrossRef] [PubMed]
- Berglund, Ö.; Kätterer, T.; Meurer, K.H.E. Emissions of CO2, N2O and CH4 from Cultivated and Set Aside Drained Peatland in Central Sweden. Front. Environ. Sci. 2021, 9, 630721. [Google Scholar] [CrossRef]
- Sloan, T.J.; Payne, R.J.; Anderson, A.R.; Bain, C.; Chapman, S.; Cowie, N.; Gilbert, P.; Lindsay, R.; Mauquoy, D.; Newton, A.J. Peatland afforestation in the UK and consequences for carbon storage. Mires Peat 2018, 23, 1–17. [Google Scholar] [CrossRef]
- Nurzakiah, S.; Nurita; Nursyamsi, D. Water Management ‘Tabat System’ in Carbon Dioxide Mitigation and Vulnerability to Fire on Peatland. J. Trop. Soils 2017, 21, 41–47. [Google Scholar] [CrossRef]
- Leifeld, J.; Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 2018, 9, 1071. [Google Scholar] [CrossRef] [PubMed]
- Boonman, J.; Hefting, M.M.; van Huisteden, C.J.A.; van den Berg, M.; van Huissteden, J.; Erkens, G.; Melman, R.; van der Velde, Y. Cutting peatland CO2 emissions with rewetting measures. EGUGA 2021, EGU22-9867. [Google Scholar] [CrossRef]
- Ólafsdóttir, R. Carbon Budget of a Drained Peatland in Western Iceland and Initial Effects of Rewetting. Master’s Thesis, Faculty of Environmental Sciences, Agricultural University of Iceland, Borgarnes, Iceland, 2015. [Google Scholar]
- Kløve, B.; Berglund, K.; Berglund, Ö.; Weldon, S.; Maljanen, M. Future options for cultivated Nordic peat soils: Can land management and rewetting control greenhouse gas emissions? Environ. Sci. Policy 2017, 69, 85–93. [Google Scholar] [CrossRef]
- Lundin, L.; Nilsson, T.; Jordan, S.; Lode, E.; Strömgren, M. Impacts of rewetting on peat, hydrology and water chemical composition over 15 years in two finished peat extraction areas in Sweden. Wetl. Ecol. Manag. 2017, 25, 405–419. [Google Scholar] [CrossRef]
- Albrecht, E.; Ratamäki, O. Effective arguments for ecosystem services in biodiversity conservation—A case study on Finnish peatland conservation. Ecosyst. Serv. 2016, 22, 41–50. [Google Scholar] [CrossRef]
- Rowland, J.A.; Bracey, C.; Moore, J.L.; Cook, C.N.; Bragge, P.; Walsh, J.C. Effectiveness of conservation interventions globally for degraded peatlands in cool-climate regions. Biol. Conserv. 2021, 263, 109327. [Google Scholar] [CrossRef]
- Abel, S.; Couwenberg, J.; Dahms, T.; Joosten, H. The Database of Potential Paludiculture Plants (DPPP) and results for Western Pomerania. Plant Divers Evol. 2013, 130, 219–228. [Google Scholar] [CrossRef]
- Kandel, T.P.; Karki, S.; Elsgaard, L.; Labouriau, R.; Lærke, P.E. Methane fluxes from a rewetted agricultural fen during two initial years of paludiculture. Sci. Total Environ. 2020, 713, 136670. [Google Scholar] [CrossRef]
- Tanneberger, F.; Schröder, C.; Hohlbein, M.; Lenschow, U.U.; Permien, T.; Wichmann, S.; Wichtmann, W. Climate Change Mitigation through Land Use on Rewetted Peatlands—Cross-Sectoral Spatial Planning for Paludiculture in Northeast Germany. Wetlands 2020, 40, 2309–2320. [Google Scholar] [CrossRef]
- Vasquez, M.J.R. Evaluation of Different Peatland Management Scenarios to Reduce GHG Emissions from Fires. A Case Study in Tropical Peatlands in Ogan Komering Ilir, Indonesia. Bois Et Forêts Des Trop. 2021, 347, 347. [Google Scholar] [CrossRef]
- Jurasinski, G.; Byrne, K.; Chojnicki, B.H.; Christiansen, J.R.; Huth, V.; Joosten, H.; Juszczak, R.; Juutinen, S.; Kasimir, Å.; Klemedtsson, L.; et al. Active afforestation of drained peatlands is not a viable option under the EU Nature Restoration Law. Zenodo 2023. [Google Scholar] [CrossRef]
- Emsens, W.J.; Aggenbach, C.J.S.; Smolders, A.J.P.; van Diggelen, R. Topsoil removal in degraded rich fens: Can we force an ecosystem reset? Ecol. Eng. 2015, 77, 225–232. [Google Scholar] [CrossRef]
- Huth, V.; Günther, A.; Bartel, A.; Gutekunst, C.; Heinze, S.; Hofer, B.; Jacobs, O.; Koebsch, F.; Rosinski, E.; Tonn, C. The climate benefits of topsoil removal and Sphagnum introduction in raised bog restoration. Restor. Ecol. 2022, 30, e13490. [Google Scholar] [CrossRef]
- Kozub, L.; Wyszomirski, T.; Kotowski, W. Topsoil removal as a method of fen restoration that helps to prevent elevated methane emissions and surface water eutrophication. Geophys. Res. Abstr. 2018, 20, 19790. [Google Scholar]
- Zak, D.; Meyer, N.; Cabezas, A.; Gelbrecht, J.; Mauersberger, R.; Tiemeyer, B.; Wagner, C.; McInnes, R. Topsoil removal to minimize internal eutrophication in rewetted peatlands and to protect downstream systems against phosphorus pollution: A case study from NE Germany. Ecol. Eng. 2017, 103, 488–496. [Google Scholar] [CrossRef]
- Lebedev, V.; Puhova, O. Software for Automated Production Line of Peat Briquettes. E3S Web Conf. 2017, 15, 01018. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Prasad, M.; Kavanagh, A.; Tzortzakis, N. Biochar type and ratio as a peat additive/partial peat replacement in growing media for cabbage seedling production. Agronomy 2019, 9, 693. [Google Scholar] [CrossRef]
- Efanov, M.V.; Kon’shin, V.V.; Sinitsyn, A.A. Production of Composite Materials from Peat and Wood by Explosive Autohydrolysis. Russ. J. Appl. Chem. 2019, 92, 45–49. [Google Scholar] [CrossRef]
- Vasiļjeva, T.; Korjakins, A. The Development of Peat and Wood-Based Thermal Insulation Material Production Technology. Constr. Sci. 2018, 20, 60–67. [Google Scholar] [CrossRef]
- Korytko, O.O. Prospects for the use of peat in biotechnology and for production products of its processing. Sci. Messenger LNU Vet. Med. Biotechnol. 2020, 22, 126–131. [Google Scholar] [CrossRef]
- Dremicheva, E.S. Energetic properties of peat saturated with petroleum products. Saf. Reliab. Power Ind. 2020, 13, 105–109. [Google Scholar] [CrossRef]
- Irtiseva, K.; Mosina, M.; Tumilovica, A.; Lapkovskis, V.; Mironovs, V.; Ozolins, J.; Stepanova, V.; Shishkin, A. Application of Granular Biocomposites Based on Homogenised Peat for Absorption of Oil Products. Materials 2022, 15, 1306. [Google Scholar] [CrossRef] [PubMed]
- Glaser, B.; Asomah, A. Plant Growth and Chemical Properties of Commercial Biochar- versus Peat-Based Growing Media. Horticulturae 2022, 8, 339. [Google Scholar] [CrossRef]
- Kain, G.; Morandini, M.; Stamminger, A.; Granig, T.; Tudor, E.M.; Schnabel, T.; Petutschnigg, A. Production and Physical–Mechanical Characterization of Peat Moss (Sphagnum) Insulation Panels. Materials 2021, 14, 6601. [Google Scholar] [CrossRef] [PubMed]
- Morandini, M.C.; Kain, G.; Eckardt, J.; Petutschnigg, A.; Tippner, J. Physical-Mechanical Properties of Peat Moss (Sphagnum) Insulation Panels with Bio-Based Adhesives. Materials 2022, 15, 3299. [Google Scholar] [CrossRef] [PubMed]
- Voropai, L.; Kuznetsova, O.; Sinitsyn, A.; Yukhtarova, O.; Akhmetova, I.; Atamanyuk, I.; Ilyashenko, S. The Influence of the Relative Content of Peat and Mineral Binder on Thermal Insulation Composite Performance Characteristics. Int. J. Technol. 2020, 11, 1618–1627. [Google Scholar] [CrossRef]
- Prasad, M.; Tzortzakis, N. Critical review of chemical properties of biochar as a component of growing media. Acta Hortic. 2021, 1317, 115–124. [Google Scholar] [CrossRef]
- Munoo, P. Review of the Use of Peat Moss in Horticulture. 2022. Available online: https://www.researchgate.net/publication/358277197_Review_of_the_use_of_Peat_Moss_in_Horticulture (accessed on 27 June 2023).
- Sniezhkin, Y.F.; Korinchuk, D.M. Peat Is an Effective Alternative Fuel. Thermophys. Therm. Power Eng. 2022, 46, 5–15. [Google Scholar] [CrossRef]
- Evans, C.D.; Peacock, M.; Baird, A.J.; Artz, R.R.E.; Burden, A.; Callaghan, N.; Chapman, P.J.; Cooper, H.M.; Coyle, M.; Craig, E.; et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 2021, 593, 548–552. [Google Scholar] [CrossRef]
- Escobar, D.; Belyazid, S.; Manzoni, S. Back to the Future: Restoring Northern Drained Forested Peatlands for Climate Change Mitigation. Front. Environ. Sci. 2022, 10, 834371. [Google Scholar] [CrossRef]
- Mathias, Y. Financing Mechanisms in Europe for Restoring Peatlands. An Overview of the Different Financing Opportunities Existing for Peatland Restoration. 2022. Available online: https://vb.nweurope.eu/media/19450/financing-mechanisms-for-rewetting-peatlands_vf.pdf (accessed on 19 February 2024).
- Horsburgh, N.; Tyler, A.; Mathieson, S.; Wackernagel, M.; Lin, D. Biocapacity and cost-effectiveness benefits of increased peatland restoration in Scotland. J. Environ. Manag. 2022, 306, 114486. [Google Scholar] [CrossRef]
- Graves, A.R.; Morris, J. Restoration of Fenland Peatland under Climate Change. Report to the Adaptation Sub-Committee of the Committee on Climate Change; Cranfield University: Cranfield, UK, 2013. [Google Scholar]
- European Commission. EU Biodiversity Strategy for 2030—Bringing Nature Back into Our Lives. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590574123338&uri=CELEX:52020DC0380 (accessed on 9 August 2022).
- United Nations. Peatland Restoration for Sustainable Water Resources and Climate Mitigation|Department of Economic and Social Affairs. Available online: https://sdgs.un.org/partnerships/peatland-restoration-sustainable-water-resources-and-climate-mitigation (accessed on 19 February 2024).
- Glenk, K.; Martin-Ortega, J. The economics of peatland restoration. J. Environ. Econ. Policy 2018, 7, 345–362. [Google Scholar] [CrossRef]
- Glenk, K.; Faccioli, M.; Martin-Ortega, J.; Schulze, C.; Potts, J. The opportunity cost of delaying climate action: Peatland restoration and resilience to climate change. Glob. Environ. Chang. 2021, 70, 102323. [Google Scholar] [CrossRef]
- Okumah, M.; Walker, C.; Martin-Ortega, J.; Ferré, M.; Glenk, K.; Novo, P. How Much Does Peatland Restoration Cost? Insights from the UK. University of Leeds—SRUC Report. 2019. Available online: https://www.researchgate.net/publication/331592457_How_much_does_peatland_restoration_cost_Insights_from_the_UK (accessed on 25 September 2023).
- Evans, C.; Artz, R.; Burden, A.; Clilverd, H.; Freeman, B.; Heinemeyer, Y.; Lindsay, R.; Morrison, R.; Potts, J.; Reed, M.; et al. Aligning the Peatland Code with the UK Peatland Inventory. Report to Defra and the IUCN Peatland Programme. 2022. (updated 2023). Available online: https://www.researchgate.net/publication/373195319_ALIGNING_THE_PEATLAND_CODE_WITH_THE_UK_PEATLAND_INVENTORY (accessed on 6 September 2023).
- Ó Brolcháin, N.; Sechi, V.; Van Belle, J.; Fritz, C.; Tilak, A.; Geurts, J.; Roehrig, N.; Nailon, P.; Cartmell-Done, K.; Liu, W.; et al. Towards A Carbon Credit & Blue Credit Scheme for Peatlands. 2022. Available online: https://vb.nweurope.eu/media/16178/carbon-credit-and-blue-credit_whitepaper.pdf (accessed on 8 January 2024).
- Joosten, H. Global Guidelines for Peatland Rewetting and Restoration. 2022. Available online: https://www.researchgate.net/publication/359773792_Global_guidelines_for_peatland_rewetting_and_restoration (accessed on 14 December 2023).
- Regina, K.; Budiman, A.; Greve, M.H.; Grønlund, A.; Kasimir, Å.; Lehtonen, H.; Petersen, S.O.; Smith, P.; Wösten, H. GHG mitigation of agricultural peatlands requires coherent policies. Clim. Policy 2016, 16, 522–541. [Google Scholar] [CrossRef]
- Van Der Meer, P.J.; Tata, H.; Rachmanadi, D.; Arifin, Y.F.; Suwarno, A.; Van Arensbergen, P. Developing sustainable and profitable solutions for peatland restoration. IOP Conf. Ser. Earth Environ. Sci. 2021, 914, 012032. [Google Scholar] [CrossRef]
- Stachowicz, M.; Manton, M.; Abramchuk, M.; Banaszuk, P.; Jarašius, L.; Kamocki, A.; Povilaitis, A.; Samerkhanova, A.; Schäfer, A.; Sendžikaitė, J.; et al. To store or to drain—To lose or to gain? Rewetting drained peatlands as a measure for increasing water storage in the transboundary Neman River Basin. Sci. Total Environ. 2022, 829, 154560. [Google Scholar] [CrossRef] [PubMed]
- Dinesen, L.; Hahn, P. Draft Ramsar Technical Report on peatland restoration and rewetting methodologies in Northern bogs. In Proceedings of the Ramsar Convention on Wetlands, 22nd Meeting of the Scientific and Technical Review Panel, Gland, Switzerland, 18–22 March 2019; pp. 18–22. [Google Scholar]
- Jaenicke, J.; Wösten, H.; Budiman, A.; Siegert, F. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig. Adapt. Strat. Glob. Chang. 2010, 15, 223–239. [Google Scholar] [CrossRef]
- Günther, A.; Huth, V.; Jurasinski, G.; Glatzel, S. The effect of biomass harvesting on greenhouse gas emissions from a rewetted temperate fen. GCB Bioenergy 2015, 7, 1092–1106. [Google Scholar] [CrossRef]
- Martens, M.; Karlsson, N.P.E.; Ehde, P.M.; Mattsson, M.; Weisner, S.E.B. The greenhouse gas emission effects of rewetting drained peatlands and growing wetland plants for biogas fuel production. J. Environ. Manag. 2021, 277, 111391. [Google Scholar] [CrossRef]
- Jurasinski, G.; Ahmad, S.; Anadon-Rosell, A.; Berendt, J.; Beyer, F.; Bill, R.; Blume-Werry, G.; Couwenberg, J.; Günther, A.; Joosten, H.; et al. From Understanding to Sustainable Use of Peatlands: The WETSCAPES Approach. Soil Syst. 2020, 4, 14. [Google Scholar] [CrossRef]
- Tanneberger, F.; Appulo, L.; Ewert, S.; Lakner, S.; Brolcháin, Ó.N.; Peters, J.; Wichtmann, W. The Power of Nature-Based Solutions: How Peatlands Can Help Us to Achieve Key EU Sustainability Objectives. Adv. Sustain. Syst. 2021, 5, 2000146. [Google Scholar] [CrossRef]
- Nainggolan, D.; Pohjola, J.; Martinsen, L.; Gyldenkaerne, S.; Elofsson, K.; Hasler, B. Enhancing Carbon Sequestration in Forests, Agricultural Lands and Wetlands in the Nordic Countries: Technical Measures and Policy Instruments; Nordic Council of Ministers: Roskilde, Denmark, 2021; Available online: https://pub.norden.org/temanord2021-537 (accessed on 14 December 2023).
- Evans, C.D.; Renou-Wilson, F.; Strack, M. The role of waterborne carbon in the greenhouse gas balance of drained and re-wetted peatlands. Aquat. Sci. 2016, 78, 573–590. [Google Scholar] [CrossRef]
- Minkkinen, K.; Ojanen, P.; Koskinen, M.; Penttilä, T. Nitrous oxide emissions of undrained, forestry-drained, and rewetted boreal peatlands. Ecol. Manag. 2020, 478, 118494. [Google Scholar] [CrossRef]
- Peacock, M.; Jones, T.G.; Futter, M.N.; Freeman, C.; Gough, R.; Baird, A.J.; Green Sophie, M.; Chapman, P.J.; Holden, J.; Evans, C.D. Peatland ditch blocking has no effect on dissolved organic matter (DOM) quality. Hydrol. Process. 2018, 32, 3891–3906. [Google Scholar] [CrossRef]
- Renou-Wilson, F.; Moser, G.; Fallon, D.; Farrell, C.A.; Müller, C.; Wilson, D. Rewetting degraded peatlands for climate and biodiversity benefits: Results from two raised bogs. Ecol. Eng. 2019, 127, 547–560. [Google Scholar] [CrossRef]
- Günther, A.; Böther, S.; Couwenberg, J.; Hüttel, S.; Jurasinski, G. Profitability of Direct Greenhouse Gas Measurements in Carbon Credit Schemes of Peatland Rewetting. Ecol. Econ. 2018, 146, 766–771. [Google Scholar] [CrossRef]
- Makrickas, E.; Manton, M.; Angelstam, P.; Grygoruk, M. Trading wood for water and carbon in peatland forests? Rewetting is worth more than wood production. J. Environ. Manag. 2023, 341, 117952. [Google Scholar] [CrossRef] [PubMed]
- Ramsar Convention of Wetlands. Practical Peatland Restoration. Available online: http://brg.go.id/panduan/ (accessed on 14 December 2023).
- Jabłońska, E.; Wiśniewska, M.; Marcinkowski, P.; Grygoruk, M.; Walton, C.R.; Zak, D.; Hoffmann, C.C.; Larsen, S.E.; Trepel, M.; Kotowski, W. Catchment-Scale Analysis Reveals High Cost-Effectiveness of Wetland Buffer Zones as a Remedy to Non-Point Nutrient Pollution in North-Eastern Poland. Water 2020, 12, 629. [Google Scholar] [CrossRef]
- Kaleja, S.; Bardule, A. Review of climate change mitigation measures applicable in degraded peatlands in Latvia. In Proceedings of the Research for Rural Development 2022: Annual 28th International Scientific Conference Proceedings, Online, 18–20 May 2022; Volume 37, pp. 56–62. [Google Scholar] [CrossRef]
- Loisel, J.; Gallego-Sala, A. Ecological resilience of restored peatlands to climate change. Commun. Earth Environ. 2022, 3, 1–8. [Google Scholar] [CrossRef]
- Skrastiņa, E.; Straupe, I.; Lazdiņš, A. Afforestation of Abandoned Peat Extraction Sites with Scots Pine (pinus sylvestris L.) as a Solution of Climate Change Mitigation. Res. Rural. Dev. 2021, 36, 64–69. [Google Scholar] [CrossRef]
- Georgie, P. Afforested Peatland Restoration. Available online: www.climatexchange.org.uk (accessed on 18 December 2023).
- Rowan, N.J.; Murray, N.; Qiao, Y.; O’neill, E.; Clifford, E.; Barceló, D.; Power, D.M. Digital transformation of peatland eco-innovations (‘Paludiculture’): Enabling a paradigm shift towards the real-time sustainable production of ‘green-friendly’ products and services. Sci. Total Environ. 2022, 838, 156328. [Google Scholar] [CrossRef]
- Surahman, A.; Shivakoti, G.P.; Soni, P. Climate Change Mitigation Through Sustainable Degraded Peatlands Management in Central. Int. J. Commons 2019, 13, 859–866. [Google Scholar] [CrossRef]
- Mulholland, B.; Abdel-Aziz, I.; Lindsay, R.; Keith, A.; Page, S.; Clough, J.; Freeman, B.; Evans, C. Literature Review: Defra project SP1218: An Assessment of the Potential for Paludiculture in England and Wales; UK Centre for Ecology & Hydrology: Lancaster, UK, 2020. [Google Scholar]
- Wichmann, S. The Economics of Paludiculture: Costs & Benefits of Wet Land Use Options for Degraded Peatlands- with a Focus on Reed and Sphagnum Moss. Ph.D. Dissertation, Universität Greifswald, Greifswald, Germany, 2021. [Google Scholar]
- Tanneberger, F.; Birr, F.; Couwenberg, J.; Kaiser, M.; Luthardt, V.; Nerger, M.; Pfister, S.; Oppermann, R.; Zeitz, J.; Beyer, C.; et al. Saving soil carbon, greenhouse gas emissions, biodiversity and the economy: Paludiculture as sustainable land use option in German fen peatlands. Reg. Environ. Chang. 2022, 22, 69. [Google Scholar] [CrossRef]
- Nizam, M.A.H.A.; Taib, S.M.; Yunus, N.Z.M.; Saman, N. Assessment of peat fire susceptibility for carbon emission reduction. IOP Conf. Ser. Earth Environ. Sci. 2023, 1144, 012014. [Google Scholar] [CrossRef]
- AlAmeri, K.; Giwa, A.; Yousef, L.; Alraeesi, A.; Taher, H. Sorption and removal of crude oil spills from seawater using peat-derived biochar: An optimization study. J. Environ. Manag. 2019, 250, 109465. [Google Scholar] [CrossRef] [PubMed]
- Silvius, M.; Giesen, W.; Lubis, R.; Salathé, T. Ramsar Advisory Mission N◦ 85 Berbak National Park Ramsar Site N◦ 554 (with references to Sembilang National Park Ramsar Site N° 1945) Peat fire prevention through green land development and conservation, peatland rewetting and public awareness. Ramsar Conv. Rep. 2018, 554, 1–60. [Google Scholar]
- Maulana, S.I.; Syaufina, L.; Prasetyo, L.B.; Aidi, M.N. A spatial decision support system for peatland fires prediction and prevention in Bengkalis Regency, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 528, 012052. [Google Scholar] [CrossRef]
- Joosten, H. Peatlands—Guidance for Climate Changes Mitigation through Conservation, Rehabilitation and Sustainable Use. 2012. Available online: https://www.researchgate.net/publication/298105346_Peatlands_-_guidance_for_climate_changes_mitigation_through_conservation_rehabilitation_and_sustainable_use (accessed on 18 December 2023).
- Falatehan, A.F.; Sari, D.A.P. Characteristics of Peat Biomass as an Alternative Energy and Its Impact on the Environment. Solid State Technol. 2020, 63, 4700–4712. [Google Scholar]
- Aitkenhead, M.; Castellazzi, M.; Mckeen, M.; Hare, M.; Artz, R.; Reed, M. Peatland Restoration and Potential Emissions Savings on Agricultural Land: An Evidence Assessment. Exec. Summ. 2021. [Google Scholar] [CrossRef]
- Korjakins, A.; Toropovs, N.; Kara, P.; Upeniece, L.; Shakhmenko, G. Application of Peat, Wood Processing and Agricultural Industry By-products in Producing the Insulating Building Materials. J. Sustain. Archit. Civ. Eng. 2013, 1, 62–68. [Google Scholar] [CrossRef]
- Voropai, L.; Sinitsyn, A.; Tikhanovskaya, G.; Yukhtarova, O. Technology for Producing Peat Heat-Insulating Boards Using Organosilicon Polymers. E3S Web Conf. 2020, 4, 161. [Google Scholar] [CrossRef]
- Sinitsyn, A.; Voropay, L.; Salikhova, R.; Yukhtarova, O. Relationship between operational properties of peat heat-insulating materials and the content of mineral binders in them. E3S Web Conf. 2020, 178, 01047. [Google Scholar] [CrossRef]
- Fedorik, F.; Zach, J.; Lehto, M.; Kymäläinen, H.R.; Kuisma, R.; Jallinoja, M.; Illikainen, K.; Alitalo, S. Hygrothermal properties of advanced bio-based insulation materials. Energy Build. 2021, 253, 111528. [Google Scholar] [CrossRef]
- Bakatovich, A.; Gaspar, F. Composite material for thermal insulation based on moss raw material. Constr. Build. Mater. 2019, 228, 116699. [Google Scholar] [CrossRef]
- Zain, N.H.M.; Mustapha, M.; Abdul Rahman, A.S. Settlement Behaviour of Peat Reinforced With Recycled Waste Tyre Granules. MATEC Web Conf. 2019, 266, 04002. [Google Scholar] [CrossRef]
- Liiv, J.; Teppand, T.; Rikmann, E.; Tenno, T. Novel eco-sustainable peat and oil shale ash-based 3D-printable composite material. Sustain. Mater. Technol. 2018, 17, e00067. [Google Scholar] [CrossRef]
- Irtiseva, K.; Lapkovskis, V.; Mironovs, V.; Ozolins, J.; Thakur, V.K.; Goel, G.; Baronins, J.; Shishkin, A. Towards Next-Generation Sustainable Composites Made of Recycled Rubber, Cenospheres, and Biobinder. Polymers 2021, 13, 574. [Google Scholar] [CrossRef]
- Irtiseva, K. Towards Next Generation Sustainable Rubber Composites from Biobinder Made of Homogenised Peat. 2020. Available online: https://www.researchgate.net/publication/347939976_Towards_Next_Generation_Sustainable_Rubber_Composites_from_Biobinder_Made_of_Homogenised_Peat (accessed on 27 June 2023).
- Kamgar, A.; Hassanajili, S.; Unbehaun, H. Oil spill remediation from water surface using induction of magnetorheological behaviour in oil by functionalized sawdust. Chem. Eng. Res. Des. 2020, 160, 119–128. [Google Scholar] [CrossRef]
- Bambalov, N.; Clarke, D.; Tomson, A.; Sokolov, G. The use of peat as a raw material for chemistry today and in the future. In Proceedings of the 13th International Peat Congress: Chemical, Physical and Biological Characteristics of Peat; The Institute for Problems of Natural Resources Use and Ecology: Minsk, Belarus, 2008; pp. 316–319. [Google Scholar]
- Arifianingsih, N.N.; Zevi, Y.; Helmy, Q.; Notodarmojo, S.; Fujita, H.; Shimayama, Y.; Kirihara, M. Peat water treatment using oxidation and physical filtration system and its performance in reducing iron (Fe), turbidity, and colour. E3S Web Conf. 2020, 148, 07011. [Google Scholar] [CrossRef]
- Xu, J.; Morris, P.J.; Liu, J.; Ledesma, J.L.J.; Holden, J. Increased Dissolved Organic Carbon Concentrations in Peat-Fed UK Water Supplies Under Future Climate and Sulfate Deposition Scenarios. Water Resour. Res. 2020, 56, e2019WR025592. [Google Scholar] [CrossRef]
Overview of State-of-the-Art | Emissions | Restoration and Management Strategies | Production of Materials and Products from Peat |
---|---|---|---|
Drained peatlands Drained peatlands in Europe Peatland protection Peatland management Sustainable management of peatlands Mitigation measures in degraded peatlands Peatland management scenarios Peat extraction in Europe Peat trade in Europe Energy and non-energy peat in Europe | Emissions from peatlands Methane, carbon dioxide, and nitrous emissions from peatlands Reduction of emissions Potential emission savings from peatlands Greenhouse gas fluxes from peatlands Carbon emission reduction Carbon storage C sequestration | Strategies to reduce emissions from peatlands GHG emission effects of rewetting drained peatlands Rewetting strategies, water table peatlands Methane emissions from rewetting Peatland conservation strategies Paludiculture Fire management in peatlands Afforestation strategies in peatlands Topsoil removal Slow rewetting | Energy peat, peat as fuel, non-energy peat Peat processing techniques, peat production Peat in biotechnology The potential of peat use High-added-value products Peat is a valued resource for products with added value After the use of peat Possibilities of peat use Peat utilisation options Biochar from peat Horticulture Peat as insulation material, insulation panels, building materials Biofuel from peat as raw material Composite materials from peat |
Main literature sources: | |||
[60,61,62,63,64,65,66,67,68,69,70] | [45,63,71,72,73,74,75,76] | [5,29,45,56,66,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91] | [6,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balode, L.; Bumbiere, K.; Sosars, V.; Valters, K.; Blumberga, D. Pros and Cons of Strategies to Reduce Greenhouse Gas Emissions from Peatlands: Review of Possibilities. Appl. Sci. 2024, 14, 2260. https://doi.org/10.3390/app14062260
Balode L, Bumbiere K, Sosars V, Valters K, Blumberga D. Pros and Cons of Strategies to Reduce Greenhouse Gas Emissions from Peatlands: Review of Possibilities. Applied Sciences. 2024; 14(6):2260. https://doi.org/10.3390/app14062260
Chicago/Turabian StyleBalode, Lauma, Ketija Bumbiere, Viesturs Sosars, Kārlis Valters, and Dagnija Blumberga. 2024. "Pros and Cons of Strategies to Reduce Greenhouse Gas Emissions from Peatlands: Review of Possibilities" Applied Sciences 14, no. 6: 2260. https://doi.org/10.3390/app14062260
APA StyleBalode, L., Bumbiere, K., Sosars, V., Valters, K., & Blumberga, D. (2024). Pros and Cons of Strategies to Reduce Greenhouse Gas Emissions from Peatlands: Review of Possibilities. Applied Sciences, 14(6), 2260. https://doi.org/10.3390/app14062260