An Improved Sparrow Search Algorithm for the Optimization of Variational Modal Decomposition Parameters
Abstract
:1. Introduction
- (1)
- In the sparrow initialization stage, cleverly utilizing the Halton sequence to generate initial solutions effectively improves the quality of the initial solutions, thereby significantly enhancing the algorithm’s robustness. This initialization strategy not only aids in a more evenly distributed set of initial solutions across the entire solution space but also reduces the algorithm’s sensitivity to initial conditions.
- (2)
- Introducing the Laplace crossover operator to cleverly perturb the position of the best individual in each iteration successfully mitigates the possibility of the algorithm becoming ensnared in local optima while significantly improving the convergence speed. By incorporating this effective local search strategy during the optimization process, we effectively expanded the algorithm’s exploration range in the solution space.
- (3)
- We extensively validated the effectiveness and outstanding performance of the algorithm on 17 benchmark functions. Moreover, the enhanced algorithm was effectively employed in optimizing parameters for the VMD algorithm, ultimately achieving satisfactory results and thus highlighting the practical value of this algorithm.
2. The Principles of SSA
3. Improved SSA Based on Halton Sequence and LX
3.1. Population Initialization Based on the Halton Sequence
3.2. Optimal Position Perturbation Based on LX
Algorithm 1 Pseudocode of HLSSA |
1. set t = 0 |
2. Initialize the population using Equation (9). |
3. compute the fitness value for each sparrow individual using the fitness function, and then arrange them in order, noting the best position and best fitness value . |
4. While (t < ) |
determine the proportion of founders PD1, the ratio of scroungers PD2 and the proportion of sparrows with danger perception PD3 |
For i = 1: PD1 |
Update the founders positions based on Formula (3). |
End for |
For i = 1: PD2 |
Update the scroungers positions based on Formula (4). |
End for |
For i = 1: PD3 |
Update the sparrows with danger perception positions based on Formula (5). |
End for |
Calculate the fitness value for each sparrow and select the best one. |
Disturb the optimal position according to Formula (11) and compute its fitness value. Compare the fitness values before and after the disturbance and choose the better one. |
t = t + 1 |
End while |
5. Return , |
4. Method Validation
4.1. Unimodal Test Function Experiments
4.1.1. Experimental Results
4.1.2. Analysis of the Results
4.2. Multimodal Test Function Experiments
4.2.1. Experimental Results
4.2.2. Analysis of the Results
4.3. HLSSA-VMD Algorithm Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, L.; Liu, S. A Novel Hybrid Grasshopper Optimization Algorithm for Numerical and Engineering Optimization Problems. Neural Process. Lett. 2023, 55, 9851–9905. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, F.; He, Y.; Wu, Y. Weak Fault Diagnosis of Rolling Bearing under Variable Speed Condition Using IEWT-Based Enhanced Envelope Order Spectrum. Meas. Sci. Technol. 2019, 30, 035003. [Google Scholar] [CrossRef]
- Xu, Y.; Cai, Z.; Ding, K. An Enhanced Bearing Fault Diagnosis Method Based on TVF-EMD and a High-Order Energy Operator. Meas. Sci. Technol. 2018, 29, 095108. [Google Scholar] [CrossRef]
- Chegini, S.N.; Bagheri, A.; Najafi, F. Application of a New EWT-Based Denoising Technique in Bearing Fault Diagnosis. Measurement 2019, 144, 275–297. [Google Scholar] [CrossRef]
- Keyhani, A.; Mohammadi, S. Structural Modal Parameter Identification Using Local Mean Decomposition. Meas. Sci. Technol. 2018, 29, 025003. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Wang, W.; Guo, S.; Zhao, S.; Lu, Z.; Xing, Z.; Jing, Z.; Wei, Z.; Wang, Y. Intelligent Fault Diagnosis Method Based on VMD-Hilbert Spectrum and ShuffleNet-V2: Application to the Gears in a Mine Scraper Conveyor Gearbox. Sensors 2023, 23, 4951. [Google Scholar] [CrossRef]
- Luo, J.; Wen, G.; Lei, Z.; Su, Y.; Chen, X. Weak Signal Enhancement for Rolling Bearing Fault Diagnosis Based on Adaptive Optimized VMD and SR under Strong Noise Background. Meas. Sci. Technol. 2023, 34, 064001. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, Y.; Sun, Y.; Su, S. Vibration Signal-Based Defect Detection Method for Railway Signal Relay Using Parameter-Optimized VMD and Ensemble Feature Selection. Control Eng. Pract. 2023, 139, 105630. [Google Scholar] [CrossRef]
- Li, T.; Zhang, F.; Lin, J.; Bai, X.; Liu, H. Fading Noise Suppression Method of Φ-OTDR System Based on Non-Local Means Filtering. Opt. Fiber Technol. 2023, 81, 103572. [Google Scholar] [CrossRef]
- Liu, B.; Liu, C.; Zhou, Y.; Wang, D. A Chatter Detection Method in Milling Based on Gray Wolf Optimization VMD and Multi-Entropy Features. Int. J. Adv. Manuf. Technol. 2023, 125, 831–854. [Google Scholar] [CrossRef]
- Mao, M.; Chang, J.; Sun, J.; Lin, S.; Wang, Z. Research on VMD-Based Adaptive TDLAS Signal Denoising Method. Photonics 2023, 10, 674. [Google Scholar] [CrossRef]
- Lu, D.; Shen, S.; Li, Y.; Zhao, B.; Liu, X.; Fang, G. An Ice-Penetrating Signal Denoising Method Based on WOA-VMD-BD. Electronics 2023, 12, 1658. [Google Scholar] [CrossRef]
- Jin, Z.; He, D.; Ma, R.; Zou, X.; Chen, Y.; Shan, S. Fault Diagnosis of Train Rotating Parts Based on Multi-Objective VMD Optimization and Ensemble Learning. Digit. Signal Process. 2022, 121, 103312. [Google Scholar] [CrossRef]
- Jing, L.; Bian, J.; He, X.; Liu, Y. Study on the Optimization of the Classification Method of Rolling Bearing Fault Type and Damage Degree Based on SFO–VMD. Meas. Sci. Technol. 2023, 34, 125047. [Google Scholar] [CrossRef]
- Wang, J.; Zhan, C.; Li, S.; Zhao, Q.; Liu, J.; Xie, Z. Adaptive Variational Mode Decomposition Based on Archimedes Optimization Algorithm and Its Application to Bearing Fault Diagnosis. Measurement 2022, 191, 110798. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Gao, B.; Shen, W.; Guan, H.; Zheng, L.; Zhang, W. Research on Multistrategy Improved Evolutionary Sparrow Search Algorithm and Its Application. IEEE Access 2022, 10, 62520–62534. [Google Scholar] [CrossRef]
- Geng, J.; Sun, X.; Wang, H.; Bu, X.; Liu, D.; Li, F.; Zhao, Z. A Modified Adaptive Sparrow Search Algorithm Based on Chaotic Reverse Learning and Spiral Search for Global Optimization. Neural Comput. Applic. 2023, 35, 24603–24620. [Google Scholar] [CrossRef]
- Du, Y.; Yuan, H.; Jia, K.; Li, F. Research on Threshold Segmentation Method of Two-Dimensional Otsu Image Based on Improved Sparrow Search Algorithm. IEEE Access 2023, 11, 70459–70469. [Google Scholar] [CrossRef]
- Xiong, Q.; Zhang, X.; He, S.; Shen, J. A Fractional-Order Chaotic Sparrow Search Algorithm for Enhancement of Long Distance Iris Image. Mathematics 2021, 9, 2790. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Chen, C.; Li, Z.; Li, J. ISSA-ELM: A Network Security Situation Prediction Model. Electronics 2022, 12, 25. [Google Scholar] [CrossRef]
- Han, M.; Zhong, J.; Sang, P.; Liao, H.; Tan, A. A Combined Model Incorporating Improved SSA and LSTM Algorithms for Short-Term Load Forecasting. Electronics 2022, 11, 1835. [Google Scholar] [CrossRef]
- Jianhua, L.; Zhiheng, W. A Hybrid Sparrow Search Algorithm Based on Constructing Similarity. IEEE Access 2021, 9, 117581–117595. [Google Scholar] [CrossRef]
- Hanh, N.T.; Binh, H.T.T.; Hoai, N.X.; Palaniswami, M.S. An Efficient Genetic Algorithm for Maximizing Area Coverage in Wireless Sensor Networks. Inf. Sci. 2019, 488, 58–75. [Google Scholar] [CrossRef]
- Ul Haq, E.; Ahmad, I.; Almanjahie, I.M. A Novel Parent Centric Crossover with the Log-Logistic Probabilistic Approach Using Multimodal Test Problems for Real-Coded Genetic Algorithms. Math. Probl. Eng. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Deep, K.; Thakur, M. A New Crossover Operator for Real Coded Genetic Algorithms. Appl. Math. Comput. 2007, 188, 895–911. [Google Scholar] [CrossRef]
- Thakur, M.; Meghwani, S.S.; Jalota, H. A Modified Real Coded Genetic Algorithm for Constrained Optimization. Appl. Math. Comput. 2014, 235, 292–317. [Google Scholar] [CrossRef]
- Emami, M.; Mozaffari, A.; Azad, N.L.; Rezaie, B. An Empirical Investigation into the Effects of Chaos on Different Types of Evolutionary Crossover Operators for Efficient Global Search in Complicated Landscapes. Int. J. Comput. Math. 2016, 93, 3–26. [Google Scholar] [CrossRef]
- Halton, J.H. Algorithm 247: Radical-Inverse Quasi-Random Point Sequence. Commun. ACM 1964, 7, 701–702. [Google Scholar] [CrossRef]
- Halton, J.H. On the Efficiency of Certain Quasi-Random Sequences of Points in Evaluating Multi-Dimensional Integrals. Numer. Math. 1960, 2, 84–90. [Google Scholar] [CrossRef]
- Kocis, L.; Whiten, W.J. Computational Investigations of Low-Discrepancy Sequences. ACM Trans. Math. Softw. 1997, 23, 266–294. [Google Scholar] [CrossRef]
- Tian, S.; Zhen, D.; Liang, X.; Feng, G.; Cui, L.; Gu, F. Early Fault Feature Extraction for Rolling Bearings Using Adaptive Variational Mode Decomposition with Noise Suppression and Fast Spectral Correlation. Meas. Sci. Technol. 2023, 34, 065112. [Google Scholar] [CrossRef]
Algorithm | Parameters |
---|---|
PSO | Particle count: 30; max iterations: 500; learning factors: c1 = c2 = 1.5; inertia weight: w = 0.7; |
MVO | number of universes: 30; maximum iteration count: 500; probability for the existence of wormholes: |
WOA | Number of whales: 30; maximum iteration count: 500; |
SSA | population size: 30; maximum iteration count: 500; warning value: ST = 0.6; the proportion of founders: PD = 0.7, the rest are joiners; the ratio of sparrows aware of the presence of sparrows that sense danger and sound the alarm: SD = 0.2 |
HLSSA | Population size: 30; maximum iteration count: 500; warning value: ST = 0.6; the proportion of founders: PD = 0.7, the rest are joiners; the ratio of sparrows of the presence of sparrows that sense danger and sound the alarm: SD = 0.2; Halton sequence parameters: Skip = 0, Leap = 1; LX parameters: p = 0.5, q = 1 |
Benchmark Functions | n (Dimension) | Search Space | Optimal Value |
---|---|---|---|
30 | [−100, 100] | 0 | |
30 | [−10, 10] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−30, 30] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−1.28, 1.28] | 0 |
Function | Algorithm | Best | Average | STD | Variance |
---|---|---|---|---|---|
F1 | PSO | 0.00033 | 0.002926391 | 0.00251 | 6.302 × 10−6 |
MVO | 0.0060158 | 0.013780395 | 0.006517521 | 4.24781 × 10−5 | |
WOA | 1.88 × 10−85 | 1.47 × 10−74 | 2.98625 × 10−74 | 8.9177 × 10−148 | |
SSA | 0 | 5.54 × 10−86 | 1.9214×10−85 | 3.6918 × 10−170 | |
HLSSA | 0 | 0 | 0 | 0 | |
F2 | PSO | 0 | 0 | 0 | 0 |
MVO | 0.016637 | 0.03681265 | 0.011406764 | 0.000130114 | |
WOA | 9.31 × 10−57 | 4.58 × 10−51 | 1.31735 × 10−50 | 1.7354 × 10−100 | |
SSA | 0 | 1.26 × 10−45 | 3.79338 × 10−45 | 1.43898 × 10−89 | |
HLSSA | 0 | 0 | 0 | 0 | |
F3 | PSO | 0.01202 | 0.12741265 | 0.1465195 | 0.021467964 |
MVO | 0.010296 | 0.12150025 | 0.089212352 | 0.007958844 | |
WOA | 1.51 | 4.33 × 104 | 12,839.5126 | 164,853,083.9 | |
SSA | 0 | 1.89 × 10−62 | 8.23118 × 10−62 | 6.7752 × 10−123 | |
HLSSA | 0 | 0 | 0 | 0 | |
F4 | PSO | 0.01247 | 0.18308305 | 0.124116834 | 0.015404989 |
MVO | 0.042594 | 0.09646565 | 0.035631193 | 0.001269582 | |
WOA | 0.132006517 | 36.21277267 | 30.75549409 | 945.9004169 | |
SSA | 0 | 2.10 × 10−48 | 8.89079 × 10−48 | 7.90461 × 10−95 | |
HLSSA | 0 | 0 | 0 | 0 | |
F5 | PSO | 6.3088 | 33.794385 | 41.36261671 | 1710.866061 |
MVO | 6.8941 | 137.409115 | 203.9184648 | 41,582.74029 | |
WOA | 27.05372992 | 27.97991864 | 0.501056388 | 0.251057504 | |
SSA | 9.40 × 10−8 | 6.21 × 10−5 | 9.98646 × 10−5 | 9.97294 × 10−9 | |
HLSSA | 2.75 × 10−9 | 1.75 × 10−6 | 2.57505 × 10−6 | 6.63087 × 10−12 | |
F6 | PSO | 0.00020952 | 0.00419352 | 0.004367111 | 1.90717 × 10−5 |
MVO | 0.0037676 | 0.01302205 | 0.005310819 | 2.82048 × 10-5 | |
WOA | 0.141565425 | 0.423901093 | 0.233104106 | 0.054337524 | |
SSA | 6.86 × 10−10 | 2.96 × 10−7 | 3.99442 × 10−7 | 1.59554 × 10−13 | |
HLSSA | 2.67 × 10−13 | 3.25 × 10−9 | 2.99447 × 10−9 | 8.96684 × 10−18 | |
F7 | PSO | 0.00015349 | 0.000624792 | 0.000462511 | 2.13917 × 10−7 |
MVO | 0.0013722 | 0.003321475 | 0.001558795 | 2.42984 × 10−6 | |
WOA | 3.21249 × 10−5 | 0.005392808 | 0.005106315 | 2.60745 × 10−5 | |
SSA | 0.000066649 | 0.000400385 | 0.000294376 | 8.66569 × 10−8 | |
HLSSA | 2.09 × 10−6 | 4.91 × 10−5 | 2.81604 × 10−5 | 7.93008 × 10−10 |
Benchmark Functions | n (Dimension) | Search Space | Optimal Value |
---|---|---|---|
30 | [−500, 500] | −12,569.5 | |
30 | [−5.12, 5.12] | 0 | |
30 | [−32, 32] | 0 | |
30 | [−600, 600] | 0 | |
30 | [−30, 30] | 0 |
Function | Algorithm | Best | Average | STD | Variance |
---|---|---|---|---|---|
F8 | PSO | −1880.0986 | −2524.558865 | 377.4638744 | 142,478.9765 |
MVO | −2154.8354 | −3008.179335 | 380.7394914 | 144,962.5603 | |
WOA | −1.26 × 104 | −1.03 × 104 | 1727.512209 | 2,984,298.431 | |
SSA | −12,569.0584 | −10,417.30763 | 2201.824506 | 4,848,031.157 | |
HLSSA | −12,569.5 | −12,569.5 | 1.81899 × 10−12 | 3.30872 × 10−24 | |
F9 | PSO | 6.0018 | 23.206275 | 14.66438476 | 215.0441805 |
MVO | 6.9718 | 15.52885 | 5.804935452 | 33.6972756 | |
WOA | 0 | 0 | 0 | 0 | |
SSA | 0 | 0 | 0 | 0 | |
HLSSA | 0 | 0 | 0 | 0 | |
F10 | PSO | 0.015674 | 1.260136 | 0.819697672 | 0.671904273 |
MVO | 0.028273 | 0.20785755 | 0.48086254 | 0.231228782 | |
WOA | 4.44 × 10−16 | 4.53 × 10−15 | 2.58031 × 10−15 | 6.65799 × 10−30 | |
SSA | 4.44 × 10−16 | 4.44 × 10−16 | 9.86076 × 10−32 | 9.72346 × 10−63 | |
HLSSA | 4.44 × 10−16 | 4.44 × 10−16 | 9.86076 × 10−32 | 9.36772 × 10−33 | |
F11 | PSO | 0.024742 | 0.12481485 | 0.068084759 | 0.004635534 |
MVO | 0.17882 | 0.312224 | 0.124271598 | 0.01544343 | |
WOA | 0 | 0.02551 | 0.07007949 | 0.004911135 | |
SSA | 0 | 0 | 0 | 0 | |
HLSSA | 0 | 0 | 0 | 0 | |
F12 | PSO | 0.00068858 | 0.126635751 | 0.326288108 | 0.10646393 |
MVO | 0.00029349 | 0.107082826 | 0.28195128 | 0.079496524 | |
WOA | 0.0052 | 0.021755 | 0.022362323 | 0.000500073 | |
SSA | 1.14 × 10−10 | 7.83 × 10−8 | 1.24041 × 10−7 | 1.53862 × 10−14 | |
HLSSA | 1.44 × 10−13 | 2.57 × 10−9 | 2.7137 × 10−9 | 7.36418 × 10−18 |
Signal | Parameters | |||
---|---|---|---|---|
A | (Hz) | |||
3 | 0.02 | 2600 | ||
M | l | (Hz) | ||
1 | 0.025 | 70 | 0 | |
N | k | (Hz) | ||
1 | 0.035 | 100 | 0 |
Methods | Fitness | [K, α] |
---|---|---|
MVO-VMD | 8.15943 | [6, 1033] |
PSO-VMD | 8.15474 | [6, 1097] |
WOA-VMD | 8.15474 | [6, 1097] |
SSA-VMD | 8.14811 | [6, 1236] |
HLSSA-VMD | 8.14811 | [6, 1236] |
Methods | Fitness | [K, α] |
---|---|---|
MVO-VMD | 6.4152 | [3, 5803] |
PSO-VMD | 6.4139 | [4, 3361] |
WOA-VMD | 6.410 | [4, 6000] |
SSA-VMD | 6.410 | [4, 6000] |
HLSSA-VMD | 6.410 | [4, 6000] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Wang, J.; Qian, W.; Zhang, X. An Improved Sparrow Search Algorithm for the Optimization of Variational Modal Decomposition Parameters. Appl. Sci. 2024, 14, 2174. https://doi.org/10.3390/app14052174
Du H, Wang J, Qian W, Zhang X. An Improved Sparrow Search Algorithm for the Optimization of Variational Modal Decomposition Parameters. Applied Sciences. 2024; 14(5):2174. https://doi.org/10.3390/app14052174
Chicago/Turabian StyleDu, Haoran, Jixin Wang, Wenjun Qian, and Xunan Zhang. 2024. "An Improved Sparrow Search Algorithm for the Optimization of Variational Modal Decomposition Parameters" Applied Sciences 14, no. 5: 2174. https://doi.org/10.3390/app14052174
APA StyleDu, H., Wang, J., Qian, W., & Zhang, X. (2024). An Improved Sparrow Search Algorithm for the Optimization of Variational Modal Decomposition Parameters. Applied Sciences, 14(5), 2174. https://doi.org/10.3390/app14052174