Phantomless Computed Tomography-Based Quantitative Bone Mineral Density Assessment: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Single-Energy CT
3.2. Dual-Energy CT
4. Future Perspectives: Artificial Intelligence
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
BMD | Bone mineral density |
CT | Computed tomography |
CTHU | Computed tomography Hounsfield Unit |
DXA | Dual X-ray absorptiometry |
PB | Phantom-based |
PL | Phantomless |
PB-BMD | Phantom-based BMD |
PLBMD | Phantomless BMD |
PB-QCT | Phantom-based QCT |
PL-QCT | Phantomless QCT |
QCT | Quantitative computed tomography |
QDECT | Quantitative dual-energy CT |
ROI | Region of interest |
vBMD | Volumetric bone mineral density |
VOI | Volume of interest |
References
- Akkawi, I.; Zmerly, H. Osteoporosis: Current Concepts. Joints 2018, 6, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Sozen, T.; Ozisik, L.; Calik Basaran, N. An Overview and Management of Osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jönsson, B.; Kanis, J.A. Osteoporosis in the European Union: Medical Management, Epidemiology and Economic Burden. Arch. Osteoporos. 2013, 8, 136. [Google Scholar] [CrossRef] [PubMed]
- Mallio, C.A.; Beomonte Zobel, B.; Quattrocchi, C.C. Evaluating Rehabilitation Interventions in Parkinson′s Disease with Functional MRI: A Promising Neuroprotective Strategy. Neural Regen. Res. 2015, 10, 702. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Svedbom, A.; Harvey, N.; McCloskey, E. V The Osteoporosis Treatment Gap. J. Bone Miner. Res. 2014, 29, 1926–1928. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K.; Vokes, T. Dual-Energy X-ray Absorptiometry. J. Clin. Densitom. 2017, 20, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wu, Y.; Zhang, Y.; Yang, X.; Gao, J. A Cross-Calibration Study Using a Novel Dual X-Ray Absorptiometry System for Bone Mineral Density Measurements with the European Spine Phantom. Quant. Imaging Med. Surg. 2023, 13, 2119–2127. [Google Scholar] [CrossRef]
- Schuit, S.C.E.; van der Klift, M.; Weel, A.E.A.M.; de Laet, C.E.D.H.; Burger, H.; Seeman, E.; Hofman, A.; Uitterlinden, A.G.; van Leeuwen, J.P.T.M.; Pols, H.A.P. Fracture Incidence and Association with Bone Mineral Density in Elderly Men and Women: The Rotterdam Study. Bone 2004, 34, 195–202. [Google Scholar] [CrossRef]
- Bolotin, H.H. DXA in Vivo BMD Methodology: An Erroneous and Misleading Research and Clinical Gauge of Bone Mineral Status, Bone Fragility, and Bone Remodelling. Bone 2007, 41, 138–154. [Google Scholar] [CrossRef]
- Yu, E.W.; Thomas, B.J.; Brown, J.K.; Finkelstein, J.S. Simulated Increases in Body Fat and Errors in Bone Mineral Density Measurements by DXA and QCT. J. Bone Miner. Res. 2012, 27, 119–124. [Google Scholar] [CrossRef]
- Fuggle, N.R.; Curtis, E.M.; Ward, K.A.; Harvey, N.C.; Dennison, E.M.; Cooper, C. Fracture Prediction, Imaging and Screening in Osteoporosis. Nat. Rev. Endocrinol. 2019, 15, 535–547. [Google Scholar] [CrossRef]
- Mallio, C.A.; Vadalà, G.; Russo, F.; Bernetti, C.; Ambrosio, L.; Zobel, B.B.; Quattrocchi, C.C.; Papalia, R.; Denaro, V. Novel Magnetic Resonance Imaging Tools for the Diagnosis of Degenerative Disc Disease: A Narrative Review. Diagnostics 2022, 12, 420. [Google Scholar] [CrossRef] [PubMed]
- Mallio, C.A.; Greco, F.; Gaudino, F.; Beomonte Zobel, B.; Quattrocchi, C.C. Computed Tomography Density Changes of Bone Metastases after Concomitant Denosumab. Skelet. Radiol. 2023, 52, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Brett, A.D.; Brown, J.K. Quantitative computed tomography and opportunistic bone density screening by dual use of computed tomography scans. J. Orthop. Translat. 2015, 4, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Paggiosi, M.A.; Debono, M.; Walsh, J.S.; Peel, N.F.A.; Eastell, R. Quantitative Computed Tomography Discriminates between Postmenopausal Women with Low Spine Bone Mineral Density with Vertebral Fractures and Those with Low Spine Bone Mineral Density Only: The SHATTER Study. Osteoporos. Int. 2020, 31, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Engelke, K.; Adams, J.E.; Armbrecht, G.; Augat, P.; Bogado, C.E.; Bouxsein, M.L.; Felsenberg, D.; Ito, M.; Prevrhal, S.; Hans, D.B.; et al. Clinical Use of Quantitative Computed Tomography and Peripheral Quantitative Computed Tomography in the Management of Osteoporosis in Adults: The 2007 ISCD Official Positions. J. Clin. Densitom. 2008, 11, 123–162. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, X.; Xu, L.; Sun, W.; Cheng, X.; Tian, W. Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women. Int. J. Endocrinol. 2013, 2013, 895474. [Google Scholar] [CrossRef] [PubMed]
- Löffler, M.T.; Jacob, A.; Valentinitsch, A.; Rienmüller, A.; Zimmer, C.; Ryang, Y.-M.; Baum, T.; Kirschke, J.S. Improved Prediction of Incident Vertebral Fractures Using Opportunistic QCT Compared to DXA. Eur. Radiol. 2019, 29, 4980–4989. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, Y.; Liu, H.; Yu, X.; Chen, S.; Ma, D.; Gao, J.; Wu, Y. A Phantom Study Comparing Low-Dose CT Physical Image Quality from Five Different CT Scanners. Quant. Imaging Med. Surg. 2022, 12, 766–780. [Google Scholar] [CrossRef]
- Lyu, T.; Zhao, W.; Zhu, Y.; Wu, Z.; Zhang, Y.; Chen, Y.; Luo, L.; Li, S.; Xing, L. Estimating Dual-Energy CT Imaging from Single-Energy CT Data with Material Decomposition Convolutional Neural Network. Med. Image Anal. 2021, 70, 102001. [Google Scholar] [CrossRef]
- Ghasemi Shayan, R.; Oladghaffari, M.; Sajjadian, F.; Fazel Ghaziyani, M. Image Quality and Dose Comparison of Single-Energy CT (SECT) and Dual-Energy CT (DECT). Radiol. Res. Pract. 2020, 2020, 1403957. [Google Scholar] [CrossRef]
- Therkildsen, J.; Thygesen, J.; Winther, S.; Svensson, M.; Hauge, E.-M.; Böttcher, M.; Ivarsen, P.; Jørgensen, H.S. Vertebral Bone Mineral Density Measured by Quantitative Computed Tomography With and Without a Calibration Phantom: A Comparison Between 2 Different Software Solutions. J. Clin. Densitom. 2018, 21, 367–374. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Zhang, C.; Ma, C.; Qi, H.; Yang, Z.-H.; Wu, H.-Y.; Yang, K.-D.; Lin, J.-Y.; Wong, T.-M.; Li, Z.-Y.; et al. Automatic Phantom-Less QCT System with High Precision of BMD Measurement for Osteoporosis Screening: Technique Optimisation and Clinical Validation. J. Orthop. Transl. 2022, 33, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.C.; Hoffmann, P.F.; Kopperdahl, D.L.; Keaveny, T.M. Phantomless Calibration of CT Scans for Measurement of BMD and Bone Strength—Inter-Operator Reanalysis Precision. Bone 2017, 103, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Xiongfeng, T.; Cheng, Z.; Meng, H.; Chi, M.; Deming, G.; Huan, Q.; Bo, C.; Kedi, Y.; Xianyue, S.; Tak-Man, W.; et al. One Novel Phantom-Less Quantitative Computed Tomography System for Auto-Diagnosis of Osteoporosis Utilizes Low-Dose Chest Computed Tomography Obtained for COVID-19 Screening. Front. Bioeng. Biotechnol. 2022, 10, 856753. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Kim, J.J.; Jang, I.G. Patient-Specific Phantomless Estimation of Bone Mineral Density and Its Effects on Finite Element Analysis Results: A Feasibility Study. Comput. Math. Methods Med. 2019, 2019, 4102410. [Google Scholar] [CrossRef] [PubMed]
- Mueller, D.K.; Kutscherenko, A.; Bartel, H.; Vlassenbroek, A.; Ourednicek, P.; Erckenbrecht, J. Phantom-Less QCT BMD System as Screening Tool for Osteoporosis without Additional Radiation. Eur. J. Radiol. 2011, 79, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Pickhardt, P.J.; Lee, L.J.; Muñoz del Rio, A.; Lauder, T.; Bruce, R.J.; Summers, R.M.; Pooler, B.D.; Binkley, N. Simultaneous Screening for Osteoporosis at CT Colonography: Bone Mineral Density Assessment Using MDCT Attenuation Techniques Compared with the DXA Reference Standard. J. Bone Miner. Res. 2011, 26, 2194–2203. [Google Scholar] [CrossRef] [PubMed]
- Weaver, A.A.; Beavers, K.M.; Hightower, R.C.; Lynch, S.K.; Miller, A.N.; Stitzel, J.D. Lumbar Bone Mineral Density Phantomless Computed Tomography Measurements and Correlation with Age and Fracture Incidence. Traffic Inj. Prev. 2015, 16, S153–S160. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhao, F.; Cheng, G.; Wang, H.; Lu, X.; He, D.; Wu, Y.; Ma, H.; Hu, L.; Yu, T. Automated Vertebral Bone Mineral Density Measurement with Phantomless Internal Calibration in Chest LDCT Scans Using Deep Learning. Br. J. Radiol. 2023, 96, 20230047. [Google Scholar] [CrossRef]
- Di, M.; Weng, Y.; Wang, G.; Bian, H.; Qi, H.; Wu, H.; Chen, C.; Dou, Y.; Wang, Z.; Ma, X.; et al. Cortical Endplate Bone Density Measured by Novel Phantomless Quantitative Computed Tomography May Predict Cage Subsidence More Conveniently and Accurately. Orthop. Surg. 2023, 15, 3126–3135. [Google Scholar] [CrossRef]
- Henzler, T.; Fink, C.; Schoenberg, S.O.; Schoepf, U.J. Dual-Energy CT: Radiation Dose Aspects. Am. J. Roentgenol. 2012, 199, S16–S25. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.M.; Zhao, Y.; Zhang, L.J.; Schoepf, U.J. Dual-Energy CT of the Lung. Am. J. Roentgenol. 2012, 199, S40–S53. [Google Scholar] [CrossRef] [PubMed]
- Greffier, J.; Si-Mohamed, S.; Guiu, B.; Frandon, J.; Loisy, M.; de Oliveira, F.; Douek, P.; Beregi, J.-P.; Dabli, D. Comparison of Virtual Monoenergetic Imaging between a Rapid Kilovoltage Switching Dual-Energy Computed Tomography with Deep-Learning and Four Dual-Energy CTs with Iterative Reconstruction. Quant. Imaging Med. Surg. 2022, 12, 1149–1162. [Google Scholar] [CrossRef] [PubMed]
- Dubief, B.; Avril, J.; Pascart, T.; Schmitt, M.; Loffroy, R.; Maillefert, J.-F.; Ornetti, P.; Ramon, A. Optimization of Dual Energy Computed Tomography Post-Processing to Reduce Lower Limb Artifacts in Gout. Quant. Imaging Med. Surg. 2022, 12, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Gruenewald, L.D.; Koch, V.; Martin, S.S.; Yel, I.; Eichler, K.; Gruber-Rouh, T.; Lenga, L.; Wichmann, J.L.; Alizadeh, L.S.; Albrecht, M.H.; et al. Diagnostic Accuracy of Quantitative Dual-Energy CT-Based Volumetric Bone Mineral Density Assessment for the Prediction of Osteoporosis-Associated Fractures. Eur. Radiol. 2022, 32, 3076–3084. [Google Scholar] [CrossRef] [PubMed]
- Nickoloff, E.L.; Feldman, F.; Atherton, J. V Bone Mineral Assessment: New Dual-Energy CT Approach. Radiology 1988, 168, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Booz, C.; Noeske, J.; Albrecht, M.H.; Lenga, L.; Martin, S.S.; Yel, I.; Huizinga, N.A.; Vogl, T.J.; Wichmann, J.L. Diagnostic Accuracy of Quantitative Dual-Energy CT-Based Bone Mineral Density Assessment in Comparison to Hounsfield Unit Measurements Using Dual X-ray Absorptiometry as Standard of Reference. Eur. J. Radiol. 2020, 132, 109321. [Google Scholar] [CrossRef]
- Wichmann, J.L.; Booz, C.; Wesarg, S.; Bauer, R.W.; Kerl, J.M.; Fischer, S.; Lehnert, T.; Vogl, T.J.; Khan, M.F.; Kafchitsas, K. Quantitative Dual-Energy CT for Phantomless Evaluation of Cancellous Bone Mineral Density of the Vertebral Pedicle: Correlation with Pedicle Screw Pull-out Strength. Eur. Radiol. 2015, 25, 1714–1720. [Google Scholar] [CrossRef]
- Nelson, G.S. Bias in Artificial Intelligence. N. C. Med. J. 2019, 80, 220–222. [Google Scholar] [CrossRef]
- Dimai, H.P. New Horizons: Artificial Intelligence Tools for Managing Osteoporosis. J. Clin. Endocrinol. Metab. 2023, 108, 775–783. [Google Scholar] [CrossRef]
- Alkaissi, H.; McFarlane, S.I. Artificial Hallucinations in ChatGPT: Implications in Scientific Writing. Cureus 2023, 15, e35179. [Google Scholar] [CrossRef]
- Mallio, C.A.; Radbruch, A.; Deike-Hofmann, K.; van der Molen, A.J.; Dekkers, I.A.; Zaharchuk, G.; Parizel, P.M.; Beomonte Zobel, B.; Quattrocchi, C.C. Artificial Intelligence to Reduce or Eliminate the Need for Gadolinium-Based Contrast Agents in Brain and Cardiac MRI. Investig. Radiol. 2023, 58, 746–753. [Google Scholar] [CrossRef]
- Greco, F.; Salgado, R.; Van Hecke, W.; Del Buono, R.; Parizel, P.M.; Mallio, C.A. Epicardial and Pericardial Fat Analysis on CT Images and Artificial Intelligence: A Literature Review. Quant. Imaging Med. Surg. 2022, 12, 2075–2089. [Google Scholar] [CrossRef]
- Yu, K.-H.; Kohane, I.S. Framing the Challenges of Artificial Intelligence in Medicine. BMJ Qual. Saf. 2019, 28, 238–241. [Google Scholar] [CrossRef]
- Zhang, Q.; Burrage, M.K.; Shanmuganathan, M.; Gonzales, R.A.; Lukaschuk, E.; Thomas, K.E.; Mills, R.; Leal Pelado, J.; Nikolaidou, C.; Popescu, I.A.; et al. Artificial Intelligence for Contrast-Free MRI: Scar Assessment in Myocardial Infarction Using Deep Learning–Based Virtual Native Enhancement. Circulation 2022, 146, 1492–1503. [Google Scholar] [CrossRef]
- Gao, L.; Jiao, T.; Feng, Q.; Wang, W. Application of Artificial Intelligence in Diagnosis of Osteoporosis Using Medical Images: A Systematic Review and Meta-Analysis. Osteoporos. Int. 2021, 32, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liao, M.; Wang, Y.; Chen, L.; He, L.; Ji, Y.; Xiao, Y.; Lu, Y.; Fan, W.; Nie, Z.; et al. Opportunistic Osteoporosis Screening Using Chest CT with Artificial Intelligence. Osteoporos. Int. 2022, 33, 2547–2561. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Huo, J.; Sun, X.; Sun, X.; Ai, S.; Zhang, L.; Liu, C. Using Radiomic Features of Lumbar Spine CT Images to Differentiate Osteoporosis from Normal Bone Density. BMC Musculoskelet. Disord. 2022, 23, 336. [Google Scholar] [CrossRef] [PubMed]
- Ferizi, U.; Besser, H.; Hysi, P.; Jacobs, J.; Rajapakse, C.S.; Chen, C.; Saha, P.K.; Honig, S.; Chang, G. Artificial Intelligence Applied to Osteoporosis: A Performance Comparison of Machine Learning Algorithms in Predicting Fragility Fractures from MRI Data. J. Magn. Reson. Imaging 2019, 49, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, S.; Kwack, K.-S.; Yun, J.S. CT and MR for Bone Mineral Density and Trabecular Bone Score Assessment in Osteoporosis Evaluation. Sci. Rep. 2023, 13, 16574. [Google Scholar] [CrossRef] [PubMed]
Year | First Author | Technique | Results |
---|---|---|---|
2010 | Mueller et al. | PB-BMD vs. PL-BMD T12–L4 | A minor BMD bias of 0.9 mg/cm3 for the PL-BMD option was found |
2011 | Pickhardt et al. | T12–L5 levels assessed using both PL-QCT and straightforward non-angled ROI MDCT attenuation measures | For BMD screening at CTC, both PL-QCT and straightforward ROI attenuation measurements of the lumbar spine are useful, with excellent sensitivity for osteoporosis as determined by the DXA T-score |
2015 | Weaver et al. | PB-QCT vs. PL-QCT approach in L1–L5 | Excellent agreement was seen in the linear regression of lumbar vBMD produced from the PB vs. PL calibrations |
2017 | Lee et al. | Spine and hip analysis using air and either hip adipose tissue or aortic blood as calibrating reference materials | Calibrated measurements using phantoms and PL were equivalent |
2018 | Therkildsen et al. | PL internal tissue calibration performed on 3 consecutive vertebrae from T12 to L4 | The PL technique has a higher intra-operator variability (5.8%) than the PB method (0.8%) and a higher inter-operator variability (5.8%) than the PB method (1.8%) |
2019 | Lee et al. | PL HU-to-BMD conversion using a multiple linear regression model | Significant correlations between the BMD values calculated using the suggested HU-to-BMD conversion and those obtained using the reference phantom |
2022 | Liu et al. | Newly developed automatic PL-QCT system | According to the findings of the BMD test, the autonomous PL-QCT system exhibited more precision than earlier studies that used QCT while still being able to detect osteoporosis similarly to DXA and PB-QCT |
2022 | Xiongfeng et al. | PL-QCT system | PL-QCT can predict osteoporosis with a fair amount of precision and accuracy |
2023 | Pan et al. | QCT using CNN | The proposed-method-measured BMDs were higher than QCT-measured BMDs in a cohort of study |
2023 | Di et al. | PL-QCT using automatic calibration technique | Preoperative BMD was an independent risk factor for postoperative cage subsidence after extreme lateral interbody fusion |
Year | First Author | Technique | Results |
---|---|---|---|
2015 | Wichmann et al. | Dedicated post-processing | The vertebral pedicle can be evaluated for PL-BMD using quantitative DECT; in comparison to other segments, BMD of the intra-pedicular segment correlates with pedicle screw pull-out strength much more strongly |
2020 | Booz et al. | DECT post-processing software using material decomposition of L1–L4 | Based on volumetric DECT and HU analyses, the overall patient-based AUC was 0.930 vs. 0.79 (p < 0.001) |
2021 | Gruenewald et al. | DECT post-processing software using material decomposition of L1 | DECT-derived BMD was substantially linked to the development of new fractures (OR: 0.871) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallio, C.A.; Vertulli, D.; Bernetti, C.; Stiffi, M.; Greco, F.; Van Goethem, J.; Parizel, P.M.; Quattrocchi, C.C.; Beomonte Zobel, B. Phantomless Computed Tomography-Based Quantitative Bone Mineral Density Assessment: A Literature Review. Appl. Sci. 2024, 14, 1447. https://doi.org/10.3390/app14041447
Mallio CA, Vertulli D, Bernetti C, Stiffi M, Greco F, Van Goethem J, Parizel PM, Quattrocchi CC, Beomonte Zobel B. Phantomless Computed Tomography-Based Quantitative Bone Mineral Density Assessment: A Literature Review. Applied Sciences. 2024; 14(4):1447. https://doi.org/10.3390/app14041447
Chicago/Turabian StyleMallio, Carlo A., Daniele Vertulli, Caterina Bernetti, Massimo Stiffi, Federico Greco, Johan Van Goethem, Paul M. Parizel, Carlo C. Quattrocchi, and Bruno Beomonte Zobel. 2024. "Phantomless Computed Tomography-Based Quantitative Bone Mineral Density Assessment: A Literature Review" Applied Sciences 14, no. 4: 1447. https://doi.org/10.3390/app14041447