An Improved Adaptive Iterative Extended Kalman Filter Based on Variational Bayesian
Abstract
:1. Introduction
2. Computational Procedure
2.1. System Model
2.2. Prior Distributions
2.3. Posterior PDFs
2.4. Algorithm 1
Algorithm 1 One time step of the proposed VBAIEKF |
Input:
Output: |
3. Illustrative Example
3.1. Two-Dimensional Target Tracking
3.2. Nonlinear Numerical UNGM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Q.; Jiang, B.; Shi, P.; Zhao, J. Cooperative Adaptive Fuzzy Tracking Control for Networked Unknown Nonlinear Multiagent Systems with Time-Varying Actuator Faults. IEEE Trans. Fuzzy Syst. 2014, 22, 494–504. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Chen, H.; Zhang, Y.; Zhang, D.; Peng, C. Trajectory Tracking Control of a Skid-Steer Mobile Robot Based on Nonlinear Model Predictive Control with a Hydraulic Motor Velocity Mapping. Appl. Sci. 2024, 14, 122. [Google Scholar] [CrossRef]
- Petrov, E.P.; Kharina, N.L. Digital Radar Imaging by Nonlinear Filtering Methods of Discrete and Continuous Parameters (Amplitude and Delay) of Reflected PM Signals. In Proceedings of the 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics), Omsk, Russia, 10–12 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Senel, N.; Kefferpütz, K.; Doycheva, K.; Elger, G. Multi-Sensor Data Fusion for Real-Time Multi-Object Tracking. Processes 2023, 11, 501. [Google Scholar] [CrossRef]
- Rahimi, F.; Rezaei, H. A Distributed Fault Estimation Approach for a Class of Continuous-Time Nonlinear Networked Systems Subject to Communication Delays. IEEE Control. Syst. Lett. 2022, 6, 295–300. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, L.; Yang, H.; Zhou, L. Distributed Cooperative Tracking Control Strategy for Virtual Coupling Trains: An Event-Triggered Model Predictive Control Approach. Processes 2023, 11, 3293. [Google Scholar] [CrossRef]
- Li, B.; Xiao, M. Nonlinear algorithm based on new Kalmanfiltering method for integrated SINS/GPS Navigation System. In Proceedings of the 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 20–22 November 2009; pp. 557–561. [Google Scholar] [CrossRef]
- Sun, X.; Cai, M.; Ding, J. A GPU-Accelerated Method for 3D Nonlinear Kelvin Ship Wake Patterns Simulation. Appl. Sci. 2023, 13, 12148. [Google Scholar] [CrossRef]
- Eremin, E.L.; Nikiforova, L.V.; Shelenok, E.A. Combined Nonlinear Control System for Non-Affine Multi-Loop Plant with Control and State Delays. In Proceedings of the 2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), Lipetsk, Russia, 9–11 November 2022; pp. 23–29. [Google Scholar] [CrossRef]
- Sha’aban, Y.A. Distributed Control of an Ill-Conditioned Non-Linear Process Using Control Relevant Excitation Signals. Processes 2023, 11, 3320. [Google Scholar] [CrossRef]
- Kai, G.; Zhang, W. Numerical study of a class of nonlinear financial system. J. Dyn. Control 2016, 14, 407–411. [Google Scholar]
- Zhang, Y.; Wang, Z. Statistics Character and Complexity in Nonlinear Systems. In Machine Learning; InTechOpen: London, UK, 2010. [Google Scholar]
- Zhang, Y.; Wu, W.; He, W.; Zhao, N. Algorithm Design and Convergence Analysis for Coexistence of Cognitive Radio Networks in Unlicensed Spectrum. Sensors 2023, 23, 9705. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Li, N.; Chambers, J. A Robust Gaussian Approximate Fixed-Interval Smoother for Nonlinear Systems with Heavy-Tailed Process and Measurement Noises. IEEE Signal Process. Lett. 2016, 23, 468–472. [Google Scholar] [CrossRef]
- Xu, D.; Wang, B.; Zhang, L.; Chen, Z. A New Adaptive High-Degree Unscented Kalman Filter with Unknown Process Noise. Electronics 2022, 11, 1863. [Google Scholar] [CrossRef]
- Zhao, J. Dynamic State Estimation with Model Uncertainties Using H∞ Extended Kalman Filter. IEEE Trans. Power Syst. 2018, 33, 1099–1100. [Google Scholar] [CrossRef]
- Luo, X.; Zhao, J.; Xiong, Y.; Xu, H.; Chen, H.; Zhang, S. Parameter Identification of Five-Phase Squirrel Cage Induction Motor Based on Extended Kalman Filter. Processes 2022, 10, 1440. [Google Scholar] [CrossRef]
- Huang, W.; Fu, H.; Zhang, W. A Novel Robust Variational Bayesian Filter for Unknown Time-Varying Input and Inaccurate Noise Statistics. IEEE Sensors Lett. 2023, 7, 7001104. [Google Scholar] [CrossRef]
- Lu, X.; Jing, D.; Jiang, D.; Gao, Y.; Yang, J.; Li, Y.; Li, W.; Tao, J.; Liu, M. Trajectory PHD Filter for Adaptive Measurement Noise Covariance Based on Variational Bayesian Approximation. Appl. Sci. 2022, 12, 6388. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Xu, B.; Wu, Z.; Chambers, J.A. A New Adaptive Extended Kalman Filter for Cooperative Localization. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 353–368. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, S.; Wu, H.; Chen, K. Robust Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Heavy-Tailed Noises. IEEE Access 2018, 6, 39208–39219. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, H. Student’s t-Kernel-Based Maximum Correntropy Kalman Filter. Sensors 2022, 22, 1683. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Li, K.; Hu, B. Huber’s M-Estimation-Based Process Uncertainty Robust Filter for Integrated INS/GPS. IEEE Sensors J. 2015, 15, 3367–3374. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Y.; Xu, B. Robust Huber-Based Iterated Divided Difference Filtering with Application to Cooperative Localization of Autonomous Underwater Vehicles. Sensors 2014, 14, 24523–24542. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, Y.; Wang, X. Iterated maximum correntropy unscented Kalman filters for non-Gaussian systems. Signal Process. 2019, 163, 87–94. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Hao, P.; Deng, H. Observer-Based Approximate Affine Nonlinear Model Predictive Controller for Hydraulic Robotic Excavators with Constraints. Processes 2023, 11, 1918. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Z.; Xiong, H.; Zhu, T.; Long, Z.; Wu, W. Transformer Aided Adaptive Extended Kalman Filter for Autonomous Vehicle Mass Estimation. Processes 2023, 11, 887. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Zhang, W.; Zuo, J.; Wang, H. Derivative-Free Huber-Kalman Smoothing Based on Alternating Minimization. Signal Process. 2019, 163, 115–122. [Google Scholar] [CrossRef]
- Wang, X.; Cui, N.; Guo, J. Huber-based Unscented Filtering and its Application to Vision-based Relative Navigation. Radar Sonar Navig. Iet 2010, 4, 134–141. [Google Scholar] [CrossRef]
- Wei, X.; Hua, B.; Wu, Y.; Chen, Z. Robust Interacting Multiple Model Cubature Kalman Filter for Nonlinear Filtering with Unknown Non-Gaussian Noise. Digit. Signal Process. 2023, 136, 103982. [Google Scholar] [CrossRef]
- Kheirish, M.; Yazdi, E.A.; Mohammadi, H.; Mohammadi, M. A Fault-tolerant Sensor Fusion in Mobile Robots Using Multiple Model Kalman Filters. Robot. Auton. Syst. 2023, 161, 104343. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Li, N.; Chambers, J. A Robust Gaussian Approximate Filter for Nonlinear Systems with Heavy Tailed Measurement Noises. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 4209–4213. [Google Scholar] [CrossRef]
- Wang, G.; Yang, C.; Ma, X. A Novel Robust Nonlinear Kalman Filter Based on Multivariate Laplace Distribution. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 2705–2709. [Google Scholar] [CrossRef]
- Jacquemin, T.; Tomar, S.; Agathos, K.; Mohseni-Mofidi, S.; Bordas, S.P.A. Taylor-series Expansion based Numerical Methods: A Primer, Performance Benchmarking and New Approaches for Problems with Mon-smooth Solutions. Arch. Comput. Methods Eng. 2020, 27, 1465–1513. [Google Scholar] [CrossRef]
- Blei, D.M.; Kucukelbir, A.; Mcauliffe, J.D. Variational Inference: A Review for Statisticians. J. Amer. Statist. Assoc. 2017, 112, 859–877. [Google Scholar] [CrossRef]
- Dong, P.; Jing, Z.; Leung, H.; Shen, K. Variational Bayesian adaptive cubature information filter based on Wishart distribution. IEEE Trans. Autom. Control 2017, 2, 6051–6057. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Shi, P.; Chambers, J. Variational Adaptive Kalman Filter with Gaussian-Inverse-Wishart Mixture Distribution. IEEE Trans. Autom. Control 2021, 66, 1786–1793. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Wang, X. Maximum Correntropy Rauch-Tung-Striebel Smoother for Nonlinear and Non-Gaussian Systems. IEEE Trans. Autom. Control 2021, 66, 1270–1277. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments Against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Yang, Y.; Gao, Y.; Zhang, W. Variational Bayesian-Based Robust Cubature Kalman Filter with Application on SINS/GPS Integrated Navigation System. IEEE Sensors J. 2022, 22, 489–500. [Google Scholar] [CrossRef]
Algorithms and Noise | Values | |||
---|---|---|---|---|
Algorithms | Noise | ) | ||
RKF-ML | 6.3241 (+4.25%) | 7.5472 (−3.54%) | 0.31657 | |
6.0665 (0%) | 7.8242 (0%) | 0.32264 | ||
6.3854 (+5.26%) | 7.6821 (−1.82%) | 0.33187 | ||
GA-VB | 4.8532 (−1.65%) | 10.3365 (−1.03%) | 0.11242 | |
4.9348 (0%) | 10.4445 (0%) | 0.11754 | ||
4.9938 (+1.196%) | 10.5564 (+1.07%) | 0.12432 | ||
The VBAIEKF | 4.3034 (+0.058%) | 7.1024 (−0.17%) | 0.10128 | |
4.3009 (0%) | 7.1147 (0%) | 0.11215 | ||
4.3259 (+0.58%) | 7.2658 (+0.21%) | 0.11393 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Wang, L.; Xie, Q.; Zhou, Y. An Improved Adaptive Iterative Extended Kalman Filter Based on Variational Bayesian. Appl. Sci. 2024, 14, 1393. https://doi.org/10.3390/app14041393
Fu Q, Wang L, Xie Q, Zhou Y. An Improved Adaptive Iterative Extended Kalman Filter Based on Variational Bayesian. Applied Sciences. 2024; 14(4):1393. https://doi.org/10.3390/app14041393
Chicago/Turabian StyleFu, Qiang, Ling Wang, Qiyue Xie, and Yucai Zhou. 2024. "An Improved Adaptive Iterative Extended Kalman Filter Based on Variational Bayesian" Applied Sciences 14, no. 4: 1393. https://doi.org/10.3390/app14041393
APA StyleFu, Q., Wang, L., Xie, Q., & Zhou, Y. (2024). An Improved Adaptive Iterative Extended Kalman Filter Based on Variational Bayesian. Applied Sciences, 14(4), 1393. https://doi.org/10.3390/app14041393