Design of Nanoscale Quantum Interconnects Aided by Conditional Generative Adversarial Networks
Abstract
:1. Introduction
2. Model Systems and Computational Methods
2.1. Neuromorphic Electron Waveguides
2.2. The Exact Diagonalization Method
2.3. Image-to-Image Translation Using Pix2pix
2.4. Convoluting Charge Density Maps and Deconvoluting Tunneling Current Maps
3. Results and Discussion
3.1. Predicting Charge Localization in Neuromorphic QIs
3.2. Manipulation of Many-Electron States by In-Plane Electric Fields
3.3. Deconvolution of the Tunneling-Current Density Maps
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CDM | charge density map |
cGAN | convolutional generative adversarial neural network |
ED | exact diagonalization |
ML | machine learning |
QD | quantum dot |
QI | quantum interconnect |
STM | scanning tunneling microscope |
TCM | tunneling current map |
References
- Clarke, J.; Wilhelm, F.K. Superconducting quantum bits. Nature 2008, 453, 1031–1042. [Google Scholar] [CrossRef]
- Kockum, A.F.; Nori, F. Quantum Bits with Josephson Junctions. In Fundamentals and Frontiers of the Josephson Effect; Springer International Publishing: Cham, Switzerland, 2019; pp. 703–741. [Google Scholar]
- Lange, W. Quantum Computing with Trapped Ions. In Computational Complexity: Theory, Techniques, and Applications; Springer: New York, NY, USA, 2012; pp. 2406–2436. [Google Scholar]
- Srinivas, R.; Burd, S.C.; Knaack, H.M.; Sutherland, R.T.; Kwiatkowski, A.; Glancy, S.; Knill, E.; Wineland, D.J.; Leibfried, D.; Wilson, A.C.; et al. High-fidelity laser-free universal control of trapped ion qubits. Nature 2021, 597, 209–213. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.O.; Wang, K.; Cao, G.; Xiao, M.; Guo, G.P. Qubits based on semiconductor quantum dots. Chin. Phys. B 2018, 27, 020305. [Google Scholar] [CrossRef]
- Zwerver, A.M.J.; Krähenmann, T.; Watson, T.F.; Lampert, L.; George, H.C.; Pillarisetty, R.; Bojarski, S.A.; Amin, P.; Amitonov, S.V.; Boter, J.M.; et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 2022, 5, 184–190. [Google Scholar] [CrossRef]
- Bertoni, A.; Bordone, P.; Brunetti, R.; Jacoboni, C.; Reggiani, S. Quantum Logic Gates based on Coherent Electron Transport in Quantum Wires. Phys. Rev. Lett. 2000, 84, 5912–5915. [Google Scholar] [CrossRef]
- Ramamoorthy, A.; Bird, J.P.; Reno, J.L. Using split-gate structures to explore the implementation of a coupled-electron-waveguide qubit scheme. J. Phys. Condens. Matter 2007, 19, 276205. [Google Scholar] [CrossRef]
- Carr, L.D.; DeMille, D.; Krems, R.V.; Ye, J. Cold and ultracold molecules: Science, technology and applications. New J. Phys. 2009, 11, 055049. [Google Scholar] [CrossRef]
- Softley, T.P. Cold and ultracold molecules in the twenties. Proc. R. Soc. A Math. Phys. Eng. Sci. 2023, 479, 20220806. [Google Scholar] [CrossRef]
- Harneit, W. Fullerene-based electron-spin quantum computer. Phys. Rev. A 2002, 65, 032322. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, G.; Yang, H.; Zhang, J.; Chen, C.; Lan, S.; Chen, H.; Guo, T. High-Performance Nonvolatile Organic Transistor Memory Using Quantum Dots-Based Floating Gate. IEEE Trans. Electron Devices 2017, 64, 3816–3821. [Google Scholar] [CrossRef]
- Hasaneen, E.S.; Heller, E.; Bansal, R.; Huang, W.; Jain, F. Modeling of nonvolatile floating gate quantum dot memory. Solid-State Electron. 2004, 48, 2055–2059. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Yang, W.C.; Hung, C.C.; Ercan, E.; Chiu, Y.C.; Lin, Y.C.; Chen, W.C. Fully Photoswitchable Phototransistor Memory Comprising Perovskite Quantum Dot-Based Hybrid Nanocomposites as a Photoresponsive Floating Gate. ACS Appl. Mater. Interfaces 2023, 15, 1675–1684. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Yun, D.J.; Noh, S.H.; Park, C.E.; Jang, J. Surface Modification of CdSe Quantum-Dot Floating Gates for Advancing Light-Erasable Organic Field-Effect Transistor Memories. ACS Nano 2018, 12, 7701–7709. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S. Quantum dots get cross. Nat. Electron. 2023, 6, 646. [Google Scholar] [CrossRef]
- Markovic, D.; Grollier, J. Quantum neuromorphic computing. Appl. Phys. Lett. 2020, 117, 150501. [Google Scholar] [CrossRef]
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci. 2021, 1, 403–409. [Google Scholar] [CrossRef]
- Bruce, N.A.; Maksym, P.A. Quantum states of interacting electrons in a real quantum dot. Phys. Rev. B 2000, 61, 4718. [Google Scholar] [CrossRef]
- Moldoveanu, V.; Manolescu, A.; Tang, C.S.; Gudmundsson, V. Coulomb interaction and transient charging of excited states in open nanosystems. Phys. Rev. B 2010, 81, 155442. [Google Scholar] [CrossRef]
- Daday, C.; Manolescu, A.; Marinescu, D.C.; Gudmundsson, V. Electronic charge and spin density distribution in a quantum ring with spin-orbit and Coulomb interactions. Phys. Rev. B 2011, 84, 115311. [Google Scholar] [CrossRef]
- Nemnes, G.A.; Mitran, T.L.; Preda, A.T.; Ghiu, I.; Marciu, M.; Manolescu, A. Investigation of bi-particle states in gate-array-controlled quantum-dot systems aided by machine learning techniques. Phys. Scr. 2022, 97, 055813. [Google Scholar] [CrossRef]
- Pantis-Simut, C.A.; Preda, A.T.; Ion, L.; Manolescu, A.; Nemnes, G.A. Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks. Mach. Learn. Sci. Technol. 2023, 4, 025023. [Google Scholar] [CrossRef]
- Gao, J.; Qiao, L.F.; Jiao, Z.Q.; Ma, Y.C.; Hu, C.Q.; Ren, R.J.; Yang, A.L.; Tang, H.; Yung, M.H.; Jin, X.M. Experimental Machine Learning of Quantum States. Phys. Rev. Lett. 2018, 120, 240501. [Google Scholar] [CrossRef] [PubMed]
- Carleo, G.; Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 2017, 355, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Duan, L.M. Efficient representation of quantum many-body states with deep neural networks. Nat. Commun. 2017, 8, 662. [Google Scholar] [CrossRef] [PubMed]
- Frey, N.C.; Akinwande, D.; Jariwala, D.; Shenoy, V.B. Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing. ACS Nano 2020, 14, 13406–13417. [Google Scholar] [CrossRef]
- Melnikov, A.A.; Nautrup, H.P.; Krenn, M.; Dunjko, V.; Tiersch, M.; Zeilinger, A.; Briegel, H.J. Active learning machine learns to create new quantum experiments. Proc. Natl. Acad. Sci. USA 2018, 115, 1221–1226. [Google Scholar] [CrossRef]
- Fösel, T.; Tighineanu, P.; Weiss, T.; Marquardt, F. Reinforcement Learning with Neural Networks for Quantum Feedback. Phys. Rev. X 2018, 8, 031084. [Google Scholar] [CrossRef]
- Reuer, K.; Landgraf, J.; Fösel, T.; O’Sullivan, J.; Beltrán, L.; Akin, A.; Norris, G.J.; Remm, A.; Kerschbaum, M.; Besse, J.C.; et al. Realizing a deep reinforcement learning agent for real-time quantum feedback. Nat. Commun. 2023, 14, 7138. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zheng, P.L.; Zhang, Y.; Deng, D.L. Topological Quantum Compiling with Reinforcement Learning. Phys. Rev. Lett. 2020, 125, 170501. [Google Scholar] [CrossRef]
- Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T.J.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training deep quantum neural networks. Nat. Commun. 2020, 11, 808. [Google Scholar] [CrossRef]
- Nguyen, T.; Paik, I.; Watanobe, Y.; Thang, T.C. An Evaluation of Hardware-Efficient Quantum Neural Networks for Image Data Classification. Electronics 2022, 11, 437. [Google Scholar] [CrossRef]
- Date, P.; Potok, T.; Schuman, C.; Kay, B. Neuromorphic Computing is Turing-Complete. In Proceedings of the ICONS’22: International Conference on Neuromorphic Systems 2022, Knoxville, TN, USA, 27–29 July 2022. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. arXiv 2016, arXiv:1611.07004. [Google Scholar]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Joucken, F.; Davenport, J.L.; Ge, Z.; Quezada-Lopez, E.A.; Taniguchi, T.; Watanabe, K.; Velasco, J.; Lagoute, J.; Kaindl, R.A. Denoising scanning tunneling microscopy images of graphene with supervised machine learning. Phys. Rev. Mater. 2022, 6, 123802. [Google Scholar] [CrossRef]
- Krull, A.; Hirsch, P.; Rother, C.; Schiffrin, A.; Krull, C. Artificial-intelligence-driven scanning probe microscopy. Commun. Phys. 2020, 3, 54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preda, A.T.; Pantis-Simut, C.-A.; Marciu, M.; Anghel, D.-V.; Allosh, A.; Ion, L.; Manolescu, A.; Nemnes, G.A. Design of Nanoscale Quantum Interconnects Aided by Conditional Generative Adversarial Networks. Appl. Sci. 2024, 14, 1111. https://doi.org/10.3390/app14031111
Preda AT, Pantis-Simut C-A, Marciu M, Anghel D-V, Allosh A, Ion L, Manolescu A, Nemnes GA. Design of Nanoscale Quantum Interconnects Aided by Conditional Generative Adversarial Networks. Applied Sciences. 2024; 14(3):1111. https://doi.org/10.3390/app14031111
Chicago/Turabian StylePreda, Amanda Teodora, Calin-Andrei Pantis-Simut, Mihai Marciu, Dragos-Victor Anghel, Alaa Allosh, Lucian Ion, Andrei Manolescu, and George Alexandru Nemnes. 2024. "Design of Nanoscale Quantum Interconnects Aided by Conditional Generative Adversarial Networks" Applied Sciences 14, no. 3: 1111. https://doi.org/10.3390/app14031111
APA StylePreda, A. T., Pantis-Simut, C.-A., Marciu, M., Anghel, D.-V., Allosh, A., Ion, L., Manolescu, A., & Nemnes, G. A. (2024). Design of Nanoscale Quantum Interconnects Aided by Conditional Generative Adversarial Networks. Applied Sciences, 14(3), 1111. https://doi.org/10.3390/app14031111