Design of Nanoscale Quantum Interconnects Aided by Conditional Generative Adversarial Networks
Abstract
1. Introduction
2. Model Systems and Computational Methods
2.1. Neuromorphic Electron Waveguides
2.2. The Exact Diagonalization Method
2.3. Image-to-Image Translation Using Pix2pix
2.4. Convoluting Charge Density Maps and Deconvoluting Tunneling Current Maps
3. Results and Discussion
3.1. Predicting Charge Localization in Neuromorphic QIs
3.2. Manipulation of Many-Electron States by In-Plane Electric Fields
3.3. Deconvolution of the Tunneling-Current Density Maps
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CDM | charge density map |
cGAN | convolutional generative adversarial neural network |
ED | exact diagonalization |
ML | machine learning |
QD | quantum dot |
QI | quantum interconnect |
STM | scanning tunneling microscope |
TCM | tunneling current map |
References
- Clarke, J.; Wilhelm, F.K. Superconducting quantum bits. Nature 2008, 453, 1031–1042. [Google Scholar] [CrossRef]
- Kockum, A.F.; Nori, F. Quantum Bits with Josephson Junctions. In Fundamentals and Frontiers of the Josephson Effect; Springer International Publishing: Cham, Switzerland, 2019; pp. 703–741. [Google Scholar]
- Lange, W. Quantum Computing with Trapped Ions. In Computational Complexity: Theory, Techniques, and Applications; Springer: New York, NY, USA, 2012; pp. 2406–2436. [Google Scholar]
- Srinivas, R.; Burd, S.C.; Knaack, H.M.; Sutherland, R.T.; Kwiatkowski, A.; Glancy, S.; Knill, E.; Wineland, D.J.; Leibfried, D.; Wilson, A.C.; et al. High-fidelity laser-free universal control of trapped ion qubits. Nature 2021, 597, 209–213. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.O.; Wang, K.; Cao, G.; Xiao, M.; Guo, G.P. Qubits based on semiconductor quantum dots. Chin. Phys. B 2018, 27, 020305. [Google Scholar] [CrossRef]
- Zwerver, A.M.J.; Krähenmann, T.; Watson, T.F.; Lampert, L.; George, H.C.; Pillarisetty, R.; Bojarski, S.A.; Amin, P.; Amitonov, S.V.; Boter, J.M.; et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 2022, 5, 184–190. [Google Scholar] [CrossRef]
- Bertoni, A.; Bordone, P.; Brunetti, R.; Jacoboni, C.; Reggiani, S. Quantum Logic Gates based on Coherent Electron Transport in Quantum Wires. Phys. Rev. Lett. 2000, 84, 5912–5915. [Google Scholar] [CrossRef]
- Ramamoorthy, A.; Bird, J.P.; Reno, J.L. Using split-gate structures to explore the implementation of a coupled-electron-waveguide qubit scheme. J. Phys. Condens. Matter 2007, 19, 276205. [Google Scholar] [CrossRef]
- Carr, L.D.; DeMille, D.; Krems, R.V.; Ye, J. Cold and ultracold molecules: Science, technology and applications. New J. Phys. 2009, 11, 055049. [Google Scholar] [CrossRef]
- Softley, T.P. Cold and ultracold molecules in the twenties. Proc. R. Soc. A Math. Phys. Eng. Sci. 2023, 479, 20220806. [Google Scholar] [CrossRef]
- Harneit, W. Fullerene-based electron-spin quantum computer. Phys. Rev. A 2002, 65, 032322. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, G.; Yang, H.; Zhang, J.; Chen, C.; Lan, S.; Chen, H.; Guo, T. High-Performance Nonvolatile Organic Transistor Memory Using Quantum Dots-Based Floating Gate. IEEE Trans. Electron Devices 2017, 64, 3816–3821. [Google Scholar] [CrossRef]
- Hasaneen, E.S.; Heller, E.; Bansal, R.; Huang, W.; Jain, F. Modeling of nonvolatile floating gate quantum dot memory. Solid-State Electron. 2004, 48, 2055–2059. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Yang, W.C.; Hung, C.C.; Ercan, E.; Chiu, Y.C.; Lin, Y.C.; Chen, W.C. Fully Photoswitchable Phototransistor Memory Comprising Perovskite Quantum Dot-Based Hybrid Nanocomposites as a Photoresponsive Floating Gate. ACS Appl. Mater. Interfaces 2023, 15, 1675–1684. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Yun, D.J.; Noh, S.H.; Park, C.E.; Jang, J. Surface Modification of CdSe Quantum-Dot Floating Gates for Advancing Light-Erasable Organic Field-Effect Transistor Memories. ACS Nano 2018, 12, 7701–7709. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S. Quantum dots get cross. Nat. Electron. 2023, 6, 646. [Google Scholar] [CrossRef]
- Markovic, D.; Grollier, J. Quantum neuromorphic computing. Appl. Phys. Lett. 2020, 117, 150501. [Google Scholar] [CrossRef]
- Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci. 2021, 1, 403–409. [Google Scholar] [CrossRef]
- Bruce, N.A.; Maksym, P.A. Quantum states of interacting electrons in a real quantum dot. Phys. Rev. B 2000, 61, 4718. [Google Scholar] [CrossRef]
- Moldoveanu, V.; Manolescu, A.; Tang, C.S.; Gudmundsson, V. Coulomb interaction and transient charging of excited states in open nanosystems. Phys. Rev. B 2010, 81, 155442. [Google Scholar] [CrossRef]
- Daday, C.; Manolescu, A.; Marinescu, D.C.; Gudmundsson, V. Electronic charge and spin density distribution in a quantum ring with spin-orbit and Coulomb interactions. Phys. Rev. B 2011, 84, 115311. [Google Scholar] [CrossRef]
- Nemnes, G.A.; Mitran, T.L.; Preda, A.T.; Ghiu, I.; Marciu, M.; Manolescu, A. Investigation of bi-particle states in gate-array-controlled quantum-dot systems aided by machine learning techniques. Phys. Scr. 2022, 97, 055813. [Google Scholar] [CrossRef]
- Pantis-Simut, C.A.; Preda, A.T.; Ion, L.; Manolescu, A.; Nemnes, G.A. Mapping confinement potentials and charge densities of interacting quantum systems using conditional generative adversarial networks. Mach. Learn. Sci. Technol. 2023, 4, 025023. [Google Scholar] [CrossRef]
- Gao, J.; Qiao, L.F.; Jiao, Z.Q.; Ma, Y.C.; Hu, C.Q.; Ren, R.J.; Yang, A.L.; Tang, H.; Yung, M.H.; Jin, X.M. Experimental Machine Learning of Quantum States. Phys. Rev. Lett. 2018, 120, 240501. [Google Scholar] [CrossRef] [PubMed]
- Carleo, G.; Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 2017, 355, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Duan, L.M. Efficient representation of quantum many-body states with deep neural networks. Nat. Commun. 2017, 8, 662. [Google Scholar] [CrossRef] [PubMed]
- Frey, N.C.; Akinwande, D.; Jariwala, D.; Shenoy, V.B. Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing. ACS Nano 2020, 14, 13406–13417. [Google Scholar] [CrossRef]
- Melnikov, A.A.; Nautrup, H.P.; Krenn, M.; Dunjko, V.; Tiersch, M.; Zeilinger, A.; Briegel, H.J. Active learning machine learns to create new quantum experiments. Proc. Natl. Acad. Sci. USA 2018, 115, 1221–1226. [Google Scholar] [CrossRef]
- Fösel, T.; Tighineanu, P.; Weiss, T.; Marquardt, F. Reinforcement Learning with Neural Networks for Quantum Feedback. Phys. Rev. X 2018, 8, 031084. [Google Scholar] [CrossRef]
- Reuer, K.; Landgraf, J.; Fösel, T.; O’Sullivan, J.; Beltrán, L.; Akin, A.; Norris, G.J.; Remm, A.; Kerschbaum, M.; Besse, J.C.; et al. Realizing a deep reinforcement learning agent for real-time quantum feedback. Nat. Commun. 2023, 14, 7138. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zheng, P.L.; Zhang, Y.; Deng, D.L. Topological Quantum Compiling with Reinforcement Learning. Phys. Rev. Lett. 2020, 125, 170501. [Google Scholar] [CrossRef]
- Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T.J.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training deep quantum neural networks. Nat. Commun. 2020, 11, 808. [Google Scholar] [CrossRef]
- Nguyen, T.; Paik, I.; Watanobe, Y.; Thang, T.C. An Evaluation of Hardware-Efficient Quantum Neural Networks for Image Data Classification. Electronics 2022, 11, 437. [Google Scholar] [CrossRef]
- Date, P.; Potok, T.; Schuman, C.; Kay, B. Neuromorphic Computing is Turing-Complete. In Proceedings of the ICONS’22: International Conference on Neuromorphic Systems 2022, Knoxville, TN, USA, 27–29 July 2022. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. arXiv 2016, arXiv:1611.07004. [Google Scholar]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Joucken, F.; Davenport, J.L.; Ge, Z.; Quezada-Lopez, E.A.; Taniguchi, T.; Watanabe, K.; Velasco, J.; Lagoute, J.; Kaindl, R.A. Denoising scanning tunneling microscopy images of graphene with supervised machine learning. Phys. Rev. Mater. 2022, 6, 123802. [Google Scholar] [CrossRef]
- Krull, A.; Hirsch, P.; Rother, C.; Schiffrin, A.; Krull, C. Artificial-intelligence-driven scanning probe microscopy. Commun. Phys. 2020, 3, 54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preda, A.T.; Pantis-Simut, C.-A.; Marciu, M.; Anghel, D.-V.; Allosh, A.; Ion, L.; Manolescu, A.; Nemnes, G.A. Design of Nanoscale Quantum Interconnects Aided by Conditional Generative Adversarial Networks. Appl. Sci. 2024, 14, 1111. https://doi.org/10.3390/app14031111
Preda AT, Pantis-Simut C-A, Marciu M, Anghel D-V, Allosh A, Ion L, Manolescu A, Nemnes GA. Design of Nanoscale Quantum Interconnects Aided by Conditional Generative Adversarial Networks. Applied Sciences. 2024; 14(3):1111. https://doi.org/10.3390/app14031111
Chicago/Turabian StylePreda, Amanda Teodora, Calin-Andrei Pantis-Simut, Mihai Marciu, Dragos-Victor Anghel, Alaa Allosh, Lucian Ion, Andrei Manolescu, and George Alexandru Nemnes. 2024. "Design of Nanoscale Quantum Interconnects Aided by Conditional Generative Adversarial Networks" Applied Sciences 14, no. 3: 1111. https://doi.org/10.3390/app14031111
APA StylePreda, A. T., Pantis-Simut, C.-A., Marciu, M., Anghel, D.-V., Allosh, A., Ion, L., Manolescu, A., & Nemnes, G. A. (2024). Design of Nanoscale Quantum Interconnects Aided by Conditional Generative Adversarial Networks. Applied Sciences, 14(3), 1111. https://doi.org/10.3390/app14031111