Estimating Hardness of Cosmetic Cream Using Electro-Mechanical Impedance Sensing Technique
Abstract
:1. Introduction
2. Electro-Mechanical Impedance Sensing Technique
3. Experimental Program
3.1. Materials and Sample Preparation
3.2. Test Method
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryoo, J.Y.; Bae, J.E.; Kang, N.G. Optimization of In Vivo Stickiness Evaluation for Cosmetic Creams Using Texture Analyzer. J. Soc. Cosmet. Sci. Korea 2020, 46, 371–382. [Google Scholar]
- Yu, S.M.; Kim, J.W.; Park, H.R.; Sung, H.M.; Oh, J.S. Sensory Evaluation and Rheological Studies of Smoothness of Lotions. J. Korea Soc. Ingrielogy 2020, 2, 25–33. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jin, B.S. Effect of Particulate Gel Formation on the Rheological and Textural Properties of O/W Emulsion Creams Containing Xanthan and Locust Bean Gum. Polym. Korea 2016, 40, 483–488. [Google Scholar] [CrossRef]
- Hong, S.Y.; Chang, Y.J.; Lee, J.B.; Park, C.H. Myung Sam Park. Study on Stability of Ceramides in Liquid Crystalline Emulsions at High Temperature. J. Soc. Cosmet. Sci. Korea 2019, 45, 1–7. [Google Scholar]
- Im, D.Y. Stability Assessment of Creams Containing Coffee Tree Extract. J. Bus. Converg. 2022, 7, 53–56. [Google Scholar] [CrossRef]
- ASTM C 191-21; Standard Test Method for Time of Setting of Hydraulic Cements by Vicat Needle. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTMC403/C403M-21; Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance. ASTM International: West Conshohocken, PA, USA, 2021.
- Tekle, B.H.; Hertwig, L.; Holschemacher, K. Setting time and strength monitoring of alkali-activated cement mixtures by ultrasonic testing. Materials 2021, 14, 1889. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, F.; Zhang, Y. Early hydration and setting process of fly ash-blended cement paste under different curing temperatures. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2020, 35, 551–560. [Google Scholar] [CrossRef]
- Zhang, C.; Panda, G.P.; Yan, Q.; Zhang, W.; Vipulanandan, C.; Song, G. Monitoring early-age hydration and setting of portland cement paste by piezoelectric transducers via electromechanical impedance method. Constr. Build. Mater. 2020, 258, 120348. [Google Scholar] [CrossRef]
- Akram, K.J.; Ahmed, A.; Islam, T. Fringing field impedance sensor for hydration monitoring and setting time determination of concrete material. IEEE Trans. Instrum. Meas. 2019, 69, 2131–2138. [Google Scholar] [CrossRef]
- Kruk, A.; Madej, D. A new approach to time-resolved electrochemical impedance spectroscopy using the Impedance Camera to track fast hydration processes in cement-based materials. Measurement 2022, 205, 112199. [Google Scholar] [CrossRef]
- Wang, R.; He, F.; Shi, C.; Zhang, D.; Chen, C.; Dai, L. AC impedance spectroscopy of cement-based materials: Measurement and interpretation. Cem. Concr. Compos. 2022, 131, 104591. [Google Scholar] [CrossRef]
- Sosa Gallardo, A.F.; Provis, J.L. Electrochemical cell design and impedance spectroscopy of cement hydration. J. Mater. Sci. 2021, 56, 1203–1220. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, Q.; Panda, G.P.; Wu, W.; Song, G.; Vipulanandan, C. Real-time monitoring stiffness degradation of hardened cement paste under uniaxial compression loading through piezoceramic-based electromechanical impedance method. Constr. Build. Mater. 2020, 256, 119395. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, F.; Liu, Z.; Hong, S.; Dong, B.; Xing, F. Nondestructive monitoring on hydration behavior of cement pastes via the electrochemical impedance spectroscopy method. Measurement 2021, 185, 109884. [Google Scholar] [CrossRef]
- Lee, T.; Lee, J. Setting time and compressive strength prediction model of concrete by nondestructive ultrasonic pulse velocity testing at early age. Constr. Build. Mater. 2020, 252, 119027. [Google Scholar] [CrossRef]
- Lootens, D.; Schumacher, M.; Liard, M.; Jones, S.Z.; Bentz, D.P.; Ricci, S.; Meacci, V. Continuous strength measurements of cement pastes and concretes by the ultrasonic wave reflection method. Constr. Build. Mater. 2020, 242, 117902. [Google Scholar] [CrossRef]
- Robeyst, N.; Gruyaert, E.; Grosse, C.U.; De Belie, N. Monitoring the setting of concrete containing blast-furnace slag by measuring the ultrasonic p-wave velocity. Cem. Concr. Res. 2008, 38, 1169–1176. [Google Scholar] [CrossRef]
- Lee, J.C.; Shin, S.W.; Kim, W.J.; Lee, C.J. Electro-mechanical impedance based monitoring for the setting of cement paste using piezoelectricity sensor. Smart Struct. Syst. 2016, 17, 123–134. [Google Scholar] [CrossRef]
- Lee, J.C.; Lee, C.J. Electro-Mechanical Impedance Technique for Assessing the Setting Time of Steel-Fiber-Reinforced Mortar Using Embedded Piezoelectric Sensor. Appl. Sci. 2022, 12, 3964. [Google Scholar] [CrossRef]
- Lee, J.C.; Yi, C.Y. Setting Process Monitoring of Cement Paste Using Electromechanical Impedance of Piezoelectric Patch. Materials 2022, 15, 8114. [Google Scholar] [CrossRef]
- Lee, J.C. Evaluation of Setting Times of Concrete Using Electro-Mechanical Impedance Sensing Technique. Materials 2023, 16, 5618. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T. Fundamentals of Piezoelectricity; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Crawley, E.F.; Luis, J. Use of Piezoelectric Actuators as Elements of Intelligent Structures. AIAA J. 1987, 25, 1373–1385. [Google Scholar] [CrossRef]
- Liang, C.; Sun, F.P.; Rogers, C.A. An impedance method for dynamic analysis of active material systems. J. Intell. Mater. Syst. Struct. 1997, 8, 323–334. [Google Scholar] [CrossRef]
Ingredients | Contents (%) | |||||
---|---|---|---|---|---|---|
Plain | 2% | 4% | 6% | 8% | ||
A | Distilled water | 29.50 | 27.50 | 25.50 | 23.50 | 21.50 |
Glycerin | 3 | 3 | 3 | 3 | 3 | |
Propylene glycol | 3 | 3 | 3 | 3 | 3 | |
Triethanolamine | 1 | 1 | 1 | 1 | 1 | |
1,2-Hexanediol | 1 | 1 | 1 | 1 | 1 | |
B | Distilled water | 50 | 50 | 50 | 50 | 50 |
Carbomer 980 | 1 | 1 | 1 | 1 | 1 | |
C | Stearic acid | 1 | 1 | 1 | 1 | 1 |
Cetyl alcohol | 1 | 1 | 1 | 1 | 1 | |
Squalane | 7 | 7 | 7 | 7 | 7 | |
White petrolatum | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
Polyoxyetylene sorbitan monostearate | 2 | 2 | 2 | 2 | 2 | |
Beeswax | 0 | 2 | 4 | 6 | 8 | |
Total | 100 | 100 | 100 | 100 | 100 |
Frequency (kHz) | Resonant Resistance (Ω) | Capacity (pF) | Dimension (mm) | Plate Material | ||||
D | d | T | t | |||||
3.5 ± 0.5 | 350 | 30,000 ± 30 | 20 | 15 | 0.23 | 0.1 | Brass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-C.; Yoo, D.-H.; Lee, I.-C. Estimating Hardness of Cosmetic Cream Using Electro-Mechanical Impedance Sensing Technique. Appl. Sci. 2024, 14, 1110. https://doi.org/10.3390/app14031110
Lee J-C, Yoo D-H, Lee I-C. Estimating Hardness of Cosmetic Cream Using Electro-Mechanical Impedance Sensing Technique. Applied Sciences. 2024; 14(3):1110. https://doi.org/10.3390/app14031110
Chicago/Turabian StyleLee, Jun-Cheol, Dan-Hee Yoo, and In-Chul Lee. 2024. "Estimating Hardness of Cosmetic Cream Using Electro-Mechanical Impedance Sensing Technique" Applied Sciences 14, no. 3: 1110. https://doi.org/10.3390/app14031110
APA StyleLee, J.-C., Yoo, D.-H., & Lee, I.-C. (2024). Estimating Hardness of Cosmetic Cream Using Electro-Mechanical Impedance Sensing Technique. Applied Sciences, 14(3), 1110. https://doi.org/10.3390/app14031110