Accelerated Co-Composting of Textile Waste Using the New Strains and Microbial Consortium: Evaluation of Maturity, Stability and Microbial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Raw Materials
2.2. Bacterial Strain Isolation
2.3. Bioaugmentation Culture Conditions
2.4. Analysis Methods
2.5. Identification of Micro-Organisms
2.6. Data Processing and Statistical Analysis
3. Results
3.1. Changes in Temperature and Bacterial Growth
3.2. Variations in TOC, Ash, TKN and C/N Ratio During Bioaugmentation
3.3. Correlation Between Bacteria, Consortium and Physical-Chemical Parameters
3.4. Identification of Bacteria
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, L.; Zhao, Y.; Yao, X.; Zhou, M.; Li, W.; Liu, Z.; Hu, B. Inoculation Enhances Directional Humification by Increasing Microbial Interaction Intensity in Food Waste Composting. Chemosphere 2023, 322, 138191. [Google Scholar] [CrossRef]
- Li, M.; Li, F.; Zhou, J.; Yuan, Q.; Hu, N. Fallen Leaves Are Superior to Tree Pruning as Bulking Agents in Aerobic Composting Disposing Kitchen Waste. Bioresour. Technol. 2022, 346, 126374. [Google Scholar] [CrossRef]
- Xu, M.; Yang, M.; Sun, H.; Gao, M.; Wang, Q.; Wu, C. Bioconversion of Biowaste into Renewable Energy and Resources: A Sustainable Strategy. Environ. Res. 2022, 214, 113929. [Google Scholar] [CrossRef]
- Wang, Q.; Li, N.; Jiang, S.; Li, G.; Yuan, J.; Li, Y.; Chang, R.; Gong, X. Composting of Post-Consumption Food Waste Enhanced by Bioaugmentation with Microbial Consortium. Sci. Total Environ. 2024, 907, 168107. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Qi, C.; Zhang, L.; Ma, Y.; Li, G.; Nghiem, L.D.; Luo, W. Regulating Bacterial Dynamics by Lime Addition to Enhance Kitchen Waste Composting. Bioresour. Technol. 2021, 341, 125749. [Google Scholar] [CrossRef] [PubMed]
- Graça, J.; Murphy, B.; Pentlavalli, P.; Allen, C.C.R.; Bird, E.; Gaffney, M.; Duggan, T.; Kelleher, B. Bacterium Consortium Drives Compost Stability and Degradation of Organic Contaminants in In-Vessel Composting Process of the Mechanically Separated Organic Fraction of Municipal Solid Waste (MS-OFMSW). Bioresour. Technol. Rep. 2021, 13, 100621. [Google Scholar] [CrossRef]
- Cao, Z.; Deng, F.; Wang, R.; Li, J.; Liu, X.; Li, D. Bioaugmentation on Humification during Co-Composting of Corn Straw and Biogas Slurry. Bioresour. Technol. 2023, 374, 128756. [Google Scholar] [CrossRef]
- Roy, D.; Gunri, S.K.; Kundu, C.K.; Bandyopadhyay, P.K. Rapid Composting of Groundnut Residues through Novel Microbial Consortium: Evaluating Maturity, Stability and Microbial Activity. Curr. Res. Microb. Sci. 2024, 7, 100277. [Google Scholar] [CrossRef] [PubMed]
- de Mendonça Costa, L.A.; de Mendonça Costa, M.S.S.; Damaceno, F.M.; Chiarelotto, M.; Bofinger, J.; Gazzola, W. Bioaugmentation as a Strategy to Improve the Compost Quality in the Composting Process of Agro-Industrial Wastes. Environ. Technol. Innov. 2021, 22, 101478. [Google Scholar] [CrossRef]
- Wijerathna, P.A.K.C.; Udayagee, K.P.P.; Idroos, F.S.; Manage, P.M. Formulation of Novel Microbial Consortia for Rapid Composting of Biodegradable Municipal Solid Waste: An Approach in the Circular Economy. Environ. Nat. Resour. J. 2024, 22, 283–300. [Google Scholar] [CrossRef]
- Wang, S.; Long, H.; Hu, X.; Wang, H.; Wang, Y.; Guo, J.; Zheng, X.; Ye, Y.; Shao, R.; Yang, Q. The Co-Inoculation of Trichoderma Viridis and Bacillus Subtilis Improved the Aerobic Composting Efficiency and Degradation of Lignocellulose. Bioresour. Technol. 2024, 394, 130285. [Google Scholar] [CrossRef]
- Li, M.; Li, S.; Meng, Q.; Chen, S.; Wang, J.; Guo, X.; Ding, F.; Shi, L. Feedstock Optimization with Rice Husk Chicken Manure and Mature Compost during Chicken Manure Composting: Quality and Gaseous Emissions. Bioresour. Technol. 2023, 387, 129694. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Hao, Y.; Lin, B.; Huang, Z.; Zhang, Y.; Chen, L.; Li, K.; Li, J. The Bioaugmentation Effect of Microbial Inoculants on Humic Acid Formation during Co-Composting of Bagasse and Cow Manure. Environ. Res. 2024, 252, 118604. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Gao, R.; Li, Y.; Liu, Y.; Zhang, X.; Pan, J.; Tang, K.H.D.; Scriber, K.E.; Amoah, I.D.; Zhang, Z.; et al. Enhancing Nitrogen Conversion and Microbial Dynamics in Swine Manure Composting Process through Inoculation with a Microbial Consortium. J. Clean. Prod. 2023, 423, 138819. [Google Scholar] [CrossRef]
- Biyada, S.; Merzouki, M.; Elkarrach, K.; Benlemlih, M. Spectroscopic Characterization of Organic Matter Transformation during Composting of Textile Solid Waste Using UV–Visible Spectroscopy, Infrared Spectroscopy and X-Ray Diffraction (XRD). Microchem. J. 2020, 159, 105314. [Google Scholar] [CrossRef]
- Biyada, S.; Imtara, H.; Elkarrach, K.; Laidi, O.; Saleh, A.; Al Kamaly, O.; Merzouki, M. Bio-Augmentation as an Emerging Strategy to Improve the Textile Compost Quality Using Identified Autochthonous Strains. Appl. Sci. 2022, 12, 3160. [Google Scholar] [CrossRef]
- El Fels, L.; El Ouaqoudi, F.-Z.; Barje, F.; Hafidi, M.; Ouhdouch, Y. Two Culture Approaches Used to Determine the Co-Composting Stages by Assess of the Total Microflora Changes during Sewage Sludge and Date Palm Waste Co-Composting. J. Environ. Health Sci. Eng. 2014, 12, 132. [Google Scholar] [CrossRef]
- Biyada, S.; Merzouki, M.; Demčenko, T.; Vasiliauskiene, D.; Urbonavičius, J.; Marčiulaitiene, E.; Vasarevičius, S.; Benlemlih, M. Evolution of Microbial Composition and Enzymatic Activities during the Composting of Textile Waste. Appl. Sci. 2020, 10, 3758. [Google Scholar] [CrossRef]
- Association Française de Normal (AFNOR). Amendements Organiques—Dénominations, Spécifications et Marquage; Association Française de Normal (AFNOR): Paris, France, 2018. [Google Scholar]
- Barje, F.; El Fels, L.; El Hajjouji, H.; Winterton, P.; Hafidi, M. Biodegradation of Organic Compounds during Co-Composting of Olive Oil Mill Waste and Municipal Solid Waste with Added Rock Phosphate. Environ. Technol. 2013, 34, 2965–2975. [Google Scholar] [CrossRef]
- Hemati, A.; Aliasgharzad, N.; Khakvar, R.; Delangiz, N.; Asgari Lajayer, B.; van Hullebusch, E.D. Bioaugmentation of Thermophilic Lignocellulose Degrading Bacteria Accelerate the Composting Process of Lignocellulosic Materials. Biomass Convers. Biorefinery 2023, 13, 15887–15901. [Google Scholar] [CrossRef]
- Biyada, S.; Merzouki, M.; Dėmčėnko, T.; Vasiliauskienė, D.; Marčiulaitienė, E.; Vasarevičius, S.; Urbonavičius, J. The Effect of Feedstock Concentration on the Microbial Community Dynamics During Textile Waste Composting. Front. Ecol. Evol. 2022, 10, 813488. [Google Scholar] [CrossRef]
- Menzel, T.; Neubauer, P.; Junne, S. Effect of Bioaugmentation with Paenibacillus spp. and Thin Slurry Recirculation on Microbial Hydrolysis of Maize Silage and Bedding Straw in a Plug-Flow Reactor. Biomass Convers. Biorefinery 2024, 14, 19139–19154. [Google Scholar] [CrossRef]
- Yadav, R.S.; Pragati; He, W.; Li, C.; Mishra, J.; Feng, Y. Efficient Degradation of Untreated Complex Cellulosic Substrates by Newly Isolated Aerobic Paenibacillus Species. Water 2024, 16, 1800. [Google Scholar] [CrossRef]
- Padhan, K.; Patra, R.K.; Sethi, D.; Panda, N.; Sahoo, S.K.; Pattanayak, S.K.; Senapati, A.K. Isolation, Characterization and Identification of Cellulose-Degrading Bacteria for Composting of Agro-Wastes. Biomass Convers. Biorefin. 2023. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, X.; Wang, X.; Feng, L.; Wang, Z.; Dai, J.; Zhang, H.; Xie, Y. Effects of Bacterial Inoculation on Lignocellulose Degradation and Microbial Properties during Cow Dung Composting. Bioengineered 2023, 14, 213–228. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, M.; Gao, W.; Xie, L.; Zhang, G.; Li, J.; Song, C.; Wei, Z. Different Bacillus Sp. Play Different Roles on Humic Acid during Lignocellulosic Biomass Composting. J. Clean. Prod. 2024, 434, 139901. [Google Scholar] [CrossRef]
- Wang, F.; Yao, Z.; Zhang, X.; Han, Z.; Chu, X.; Ge, X.; Lu, F.; Liu, Y. High-Level Production of Xylose from Agricultural Wastes Using GH11 Endo-Xylanase and GH43 β-Xylosidase from Bacillus sp. Bioprocess Biosyst. Eng. 2022, 45, 1705–1717. [Google Scholar] [CrossRef] [PubMed]
- Mironov, V.V.; Shchelushkina, A.A.; Ostrikova, V.V.; Klyukina, A.A.; Vanteeva, A.V.; Moldon, I.A.; Zhukov, V.G.; Kotova, I.B.; Nikolaev, Y.A. Influence of Bioaugmentation of Bacillus subtilis, B. amyloliquefaciens, and Pseudomonas aeruginosa on the Efficiency of Food Waste Composting. Microbiology 2024, 93, 209–213. [Google Scholar] [CrossRef]
- Wang, L.; Wang, T.; Xing, Z.; Zhang, Q.; Niu, X.; Yu, Y.; Teng, Z.; Chen, J. Enhanced Lignocellulose Degradation and Composts Fertility of Cattle Manure and Wheat Straw Composting by Bacillus Inoculation. J. Environ. Chem. Eng. 2023, 11, 109940. [Google Scholar] [CrossRef]
- Doan, C.T.; Tran, T.N.; Pham, T.P.; Tran, T.T.T.; Truong, B.P.; Nguyen, T.T.; Nguyen, T.M.; Bui, T.Q.H.; Nguyen, A.D.; Wang, S.L. Production, Purification, and Characterization of a Cellulase from Paenibacillus elgii. Polymers 2024, 16, 2037. [Google Scholar] [CrossRef]
- Meng, F.; Ju, X.; Zhou, Y.; Yan, L.; Chen, Z.; Wu, Y.; Li, L. Balancing the Pretreatment Effect of Deep Eutectic Solvents on Biomass and the Activity of β-Glucosidase Originating from Paenibacillus sp. LLZ1. J. Mol. Liq. 2024, 400, 12464. [Google Scholar] [CrossRef]
- Kim, E.S.; Kim, B.S.; Kim, K.Y.; Woo, H.M.; Lee, S.M.; Um, Y. Aerobic and Anaerobic Cellulose Utilization by Paenibacillus sp. CAA11 and Enhancement of Its Cellulolytic Ability by Expressing a Heterologous Endoglucanase. J. Biotechnol. 2018, 268, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Mathews, S.L.; Grunden, A.M.; Pawlak, J. Degradation of Lignocellulose and Lignin by Paenibacillus glucanolyticus. Int. Biodeterior. Biodegrad. 2016, 110, 79–86. [Google Scholar] [CrossRef]
- Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.C. Current Knowledge and Perspectives of Paenibacillus: A Review. Microb. Cell Fact. 2016, 15, 203. [Google Scholar] [CrossRef] [PubMed]
- Plakys, G.; Gasparavičiūtė, R.; Vaitekūnas, J.; Rutkienė, R.; Meškys, R. Characterization of Paenibacillus sp. GKG Endo-β-1, 3-Glucanase, a Member of Family 81 Glycoside Hydrolases. Microorganisms 2022, 10, 1930. [Google Scholar] [CrossRef]
- Harun, F.A.; Yakasai, H.M.; Jagaba, A.H.; Usman, S.; Umar, H.A.; Shukor, M.Y. Bioremediation Potential of Bacillus sp. and Paenebacillus sp. Novel Lead-Resistant Isolates: Identification, Characterization, and Optimization Studies. Microbe 2024, 3, 100087. [Google Scholar] [CrossRef]
- Sharma, P.; Melkania, U. Biochar-Enhanced Hydrogen Production from Organic Fraction of Municipal Solid Waste Using Co-Culture of Enterobacter aerogenes and E. coli. Int. J. Hydrogen Energy 2017, 42, 18865–18874. [Google Scholar] [CrossRef]
- Patel, B.; Desai, R.; Yadav, V.K.; Choudhary, N.; Ansari, M.J.; Alharbi, S.A.; Patel, R.; Thakkar, A.; Patel, A. Efficient Degradation of Methyl Red Dye from the Aqueous Solution by Individual Bacterial and Their Consortium in a Sugarcane Bagasse Waste-Based Media. Environ. Res. Commun. 2024, 6, 065010. [Google Scholar] [CrossRef]
Physical–Chemical Parameters | Textile Waste | Green Waste | Paper and Cardboard Waste | Norm NF U44-051/A2 |
---|---|---|---|---|
Moisture, % | 51.28 ± 1.03 | 61.49 ± 1.41 | 11.28 ± 1.07 | 40–60 |
pH | 7.4 ± 0.15 | 6.6 ± 0.53 | 7.2 ± 0.35 | 6.5–8.5 |
Total organic carbon (TOC), % | 31.63 ± 1.48 | 45.67 ± 1.37 | 59.35 ± 0.90 | >20 |
Total Kjeldahl nitrogen (TKN), % | 0.57 ± 0.04 | 1.23 ± 0.04 | 1.05 ± 0.05 | - |
C/N ratio | 55.1 | 37.2 | 56.7 | 20–40 |
Strains Used | TOC, % | TKN, % | C/N | Temperature, °C | |
---|---|---|---|---|---|
Streptomyces cellulosae | Final values | 24.60 | 1.23 | 20.00 | 33.26 |
Achromobacter xylosoxidans | Final values | 23.45 | 1.18 | 19.87 | 40.23 |
Serratia liquefaciens | Final values | 22.20 | 1.15 | 19.30 | 42.56 |
Consortium | Final values | 20.30 | 1.52 | 13.36 | 54.17 |
TOC | TKN | C/N | Temperature | Bacillus sp. | Paenibacillus sp. | Enterobacter aerogenes | Consortium | |
---|---|---|---|---|---|---|---|---|
TOC | 1 | |||||||
TKN | −0.913 | 1 | ||||||
C/N | 0.888 | −0.989 | 1 | |||||
Temperature | −0.554 | 0.607 | −0.667 | 1 | ||||
Bacillus sp. | −0.606 | 0.606 | −0.616 | 0.726 | 1 | |||
Paenibacillus sp. | −0.660 | 0.596 | −0.585 | 0.755 | 0.949 | 1 | ||
Enterobacter aerogenes | −0.799 | 0.719 | −0.691 | 0.764 | 0.922 | 0.925 | 1 | |
Consortium | −0.779 | 0.717 | −0.727 | 0.862 | 0.932 | 0.964 | 0.920 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biyada, S.; Tauraitė, D.; Urbonavičius, J.; Merzouki, M. Accelerated Co-Composting of Textile Waste Using the New Strains and Microbial Consortium: Evaluation of Maturity, Stability and Microbial Activity. Appl. Sci. 2024, 14, 11976. https://doi.org/10.3390/app142411976
Biyada S, Tauraitė D, Urbonavičius J, Merzouki M. Accelerated Co-Composting of Textile Waste Using the New Strains and Microbial Consortium: Evaluation of Maturity, Stability and Microbial Activity. Applied Sciences. 2024; 14(24):11976. https://doi.org/10.3390/app142411976
Chicago/Turabian StyleBiyada, Saloua, Daiva Tauraitė, Jaunius Urbonavičius, and Mohammed Merzouki. 2024. "Accelerated Co-Composting of Textile Waste Using the New Strains and Microbial Consortium: Evaluation of Maturity, Stability and Microbial Activity" Applied Sciences 14, no. 24: 11976. https://doi.org/10.3390/app142411976
APA StyleBiyada, S., Tauraitė, D., Urbonavičius, J., & Merzouki, M. (2024). Accelerated Co-Composting of Textile Waste Using the New Strains and Microbial Consortium: Evaluation of Maturity, Stability and Microbial Activity. Applied Sciences, 14(24), 11976. https://doi.org/10.3390/app142411976