Reduced Homogeneous Myocardial [18F]FDG Uptake in Routine PET/CT Studies as an Early Indicator of Chemotherapy-Induced Cardiotoxicity
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Image Acquisition
2.3. Image Processing
2.4. Statistical Analysis
2.5. Ethics
3. Results
3.1. Patients and Demographic Features
3.2. Laboratory Parameters
3.3. Image-Based Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer Treatment and Survivorship Statistics, 2019. CA. Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef]
- Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.R.; Lancellotti, P.; et al. Management of Cardiac Disease in Cancer Patients throughout Oncological Treatment: ESMO Consensus Recommendations. Ann. Oncol. 2020, 31, 171–190. [Google Scholar] [CrossRef] [PubMed]
- López-Fernández, T.; Martín García, A.; Santaballa Beltrán, A.; Montero Luis, Á.; García Sanz, R.; Mazón Ramos, P.; Velasco del Castillo, S.; López de Sá Areses, E.; Barreiro-Pérez, M.; Hinojar Baydes, R.; et al. Cardio-Onco-Hematology in Clinical Practice. Position Paper and Recommendations. Rev. Española Cardiol. 2017, 70, 474–486. [Google Scholar] [CrossRef]
- Bhagat, A.; Kleinerman, E.S. Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention. Adv. Exp. Med. Biol. 2020, 1257, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J. Adverse Cardiac Effects of Cancer Therapies: Cardiotoxicity and Arrhythmia. Nat. Rev. Cardiol. 2020, 17, 474–502. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Cardinale, D.; Dent, S.; Criscitiello, C.; Aseyev, O.; Lenihan, D.; Cipolla, C.M. Cardiotoxicity of Anticancer Treatments: Epidemiology, Detection, and Management. CA. Cancer J. Clin. 2016, 66, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Novo, G.; Nugara, C.; Fava, A.; Mantero, A.; Citro, R. Early Detection of Myocardial Damage: A Multimodality Approach. J. Cardiovasc. Echogr. 2020, 30, S4–S10. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernánde, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klei, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the Task Force on Cardio-Oncology of the European Society of Cardiology (ESC). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef] [PubMed]
- Zito, C.; Longobardo, L.; Cadeddu, C.; Monte, I.; Novo, G.; Dell’oglio, S.; Pepe, A.; Madonna, R.; Tocchetti, C.G.; Mele, D. Cardiovascular Imaging in the Diagnosis and Monitoring of Cardiotoxicity: Role of Echocardiography. J. Cardiovasc. Med. 2016, 17, S45–S54. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Tan, T.C.; Cohen, V.; Banchs, J.; Carver, J.R.; Wiegers, S.E.; et al. Assessment of Echocardiography and Biomarkers for the Extended Prediction of Cardiotoxicity in Patients Treated with Anthracyclines, Taxanes, and Trastuzumab. Circ. Cardiovasc. Imaging 2012, 5, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, E.K.; Kokkinidis, D.G.; Kampaktsis, P.N.; Amir, E.A.; Marwick, T.H.; Gupta, D.; Thavendiranathan, P. Assessment of Prognostic Value of Left Ventricular Global Longitudinal Strain for Early Prediction of Chemotherapy-Induced Cardiotoxicity: A Systematic Review and Meta-Analysis. JAMA Cardiol. 2019, 4, 1007–1018. [Google Scholar] [CrossRef] [PubMed]
- Adamo, L.; Perry, A.; Novak, E.; Makan, M.; Lindman, B.R.; Mann, D.L. Abnormal Global Longitudinal Strain Predicts Future Deterioration of Left Ventricular Function in Heart Failure Patients with a Recovered Left Ventricular Ejection Fraction. Circ. Heart Fail. 2017, 10, e003788. [Google Scholar] [CrossRef] [PubMed]
- Borde, C.; Kand, P.; Basu, S. Enhanced Myocardial Fluorodeoxyglucose Uptake Following Adriamycin-Based Therapy: Evidence of Early Chemotherapeutic Cardiotoxicity? World J. Radiol. 2012, 4, 220–223. [Google Scholar] [CrossRef]
- Bauckneht, M.; Ferrarazzo, G.; Fiz, F.; Morbelli, S.; Sarocchi, M.; Pastorino, F.; Ghidella, A.; Pomposelli, E.; Miglino, M.; Ameri, P.; et al. Doxorubicin Effect on Myocardial Metabolism as a Prerequisite for Subsequent Development of Cardiac Toxicity: A Translational 18F-FDG PET/CT Observation. J. Nucl. Med. 2017, 58, 1638–1645. [Google Scholar] [CrossRef] [PubMed]
- Bauckneht, M.; Morbelli, S.; Fiz, F.; Ferrarazzo, G.; Piva, R.; Nieri, A.; Sarocchi, M.; Spallarossa, P.; Canepari, M.; Arboscello, E.; et al. A Score-Based Approach to 18F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility. Diagnostics 2017, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Sarocchi, M.; Bauckneht, M.; Arboscello, E.; Capitanio, S.; Marini, C.; Morbelli, S.; Miglino, M.; Congiu, A.G.; Ghigliotti, G.; Balbi, M.; et al. An Increase in Myocardial 18-Fluorodeoxyglucose Uptake Is Associated with Left Ventricular Ejection Fraction Decline in Hodgkin Lymphoma Patients Treated with Anthracycline. J. Transl. Med. 2018, 16, 295. [Google Scholar] [CrossRef] [PubMed]
- Gropler, R.J.; Siegel, B.A.; Lee, K.J.; Moerlein, S.M.; Perry, D.J.; Bergmann, S.R.; Geltman, E.M. Nonuniformity in Myocardial Accumulation of Fluorine-18-Fluorodeoxyglucose in Normal Fasted Humans. J. Nucl. Med. 1990, 31, 1749–1756. [Google Scholar] [PubMed]
- Maurer, A.H.; Burshteyn, M.; Adler, L.P.; Steiner, R.M. How to Differentiate Benign versus Malignant Cardiac and Paracardiac 18F FDG Uptake at Oncologic PET/CT. Radiographics 2011, 31, 1287–1305. [Google Scholar] [CrossRef] [PubMed]
- Seiffert, A.P.; Gómez-Grande, A.; Castro-Leal, G.; Rodríguez, A.; Palomino-Fernández, D.; Gómez, E.J.; Sánchez-González, P.; Bueno, H. An Image Processing Tool for the Detection of Anthracycline-Induced Cardiotoxicity by Evaluating the Myocardial Metabolic Activity in [18F]FDG PET/CT. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.; Bengs, S.; Schade, K.; Wijnen, W.J.; Portmann, A.; Etter, D.; Fröhlich, S.; Warnock, G.I.; Treyer, V.; Burger, I.A.; et al. Myocardial 18F-FDG Uptake Pattern for Cardiovascular Risk Stratification in Patients Undergoing Oncologic PET/CT. J. Clin. Med. 2020, 9, 2279. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Borde, C.; Kand, P. Increasing Cardiac 18F-Fluorodeoxyglucose (FDG) Uptake on PET–CT as a Biomarker for Cardiotoxicity of Chemo-Radiotherapy in Cancer: A Myth or a Reality? Radiother. Oncol. 2014, 112, 451–452. [Google Scholar] [CrossRef] [PubMed]
- Ben Bouallègue, F.; Maïmoun, L.; Kucharczak, F.; Le Fur, P.; Vauchot, F.; Hay, B.; Rondet, E.; Mariano-Goulart, D. Left Ventricle Function Assessment Using Gated First-Pass 18F-FDG PET: Validation against Equilibrium Radionuclide Angiography. J. Nucl. Cardiol. 2021, 28, 594–603. [Google Scholar] [CrossRef]
- Kim, J.; Cho, S.G.; Kang, S.R.; Yoo, S.W.; Kwon, S.Y.; Min, J.J.; Bom, H.S.; Song, H.C. Association between FDG Uptake in the Right Ventricular Myocardium and Cancer Therapy-Induced Cardiotoxicity. J. Nucl. Cardiol. 2019, 27, 2154–2163. [Google Scholar] [CrossRef]
- Bauckneht, M.; Cossu, V.; Miceli, A.; Donegani, M.I.; Capitanio, S.; Morbelli, S.; Marini, C.; Sambuceti, G. FDG-PET Imaging of Doxorubicin-Induced Cardiotoxicity: A New Window on an Old Problem. Curr. Cardiovasc. Imaging Rep. 2019, 12, 41. [Google Scholar] [CrossRef]
- Becker, M.M.C.; Arruda, G.F.A.; Berenguer, D.R.F.; Buril, R.O.; Cardinale, D.; Brandão, S.C.S. Anthracycline Cardiotoxicity: Current Methods of Diagnosis and Possible Role of 18F-FDG PET/CT as a New Biomarker. Cardio-Oncology 2023, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Manabe, O.; Ohira, H.; Hirata, K.; Hayashi, S.; Naya, M.; Tsujino, I.; Aikawa, T.; Koyanagawa, K.; Oyama-Manabe, N.; Tomiyama, Y.; et al. Use of 18 F-FDG PET/CT Texture Analysis to Diagnose Cardiac Sarcoidosis. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1240–1247. [Google Scholar] [CrossRef]
- Reinert, C.P.; Wanek, L.; Bösmüller, H.; Federmann, B.; Fritz, J.; Sökler, M.; Horger, M. Computed Tomography Texture Analysis for Assessment of Chemotherapy Response of Hodgkin Lymphoma. Medicine 2020, 99, e19146. [Google Scholar] [CrossRef] [PubMed]
- Baessler, B.; Luecke, C.; Lurz, J.; Klingel, K.; Das, A.; Von Roeder, M.; De Waha-Thiele, S.; Besler, C.; Rommel, K.P.; Maintz, D.; et al. Cardiac MRI and Texture Analysis of Myocardial T1 and T2 Maps in Myocarditis with Acute versus Chronic Symptoms of Heart Failure. Radiology 2019, 292, 608–617. [Google Scholar] [CrossRef]
- Baessler, B.; Luecke, C.; Lurz, J.; Klingel, K.; Von Roeder, M.; De Waha, S.; Besler, C.; Maintz, D.; Gutberlet, M.; Thiele, H.; et al. Cardiac MRI Texture Analysis of T1 and T2 Maps in Patients with Infarctlike Acute Myocarditis. Radiology 2018, 289, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Mannil, M.; Kato, K.; Manka, R.; von Spiczak, J.; Peters, B.; Cammann, V.L.; Kaiser, C.; Osswald, S.; Nguyen, T.H.; Horowitz, J.D.; et al. Prognostic Value of Texture Analysis from Cardiac Magnetic Resonance Imaging in Patients with Takotsubo Syndrome: A Machine Learning Based Proof-of-Principle Approach. Sci. Rep. 2020, 10, 20537. [Google Scholar] [CrossRef]
- Manabe, O.; Koyanagawa, K.; Hirata, K.; Oyama-Manabe, N.; Ohira, H.; Aikawa, T.; Furuya, S.; Naya, M.; Tsujino, I.; Tomiyama, Y.; et al. Prognostic Value of 18F-FDG PET Using Texture Analysis in Cardiac Sarcoidosis. JACC Cardiovasc. Imaging 2020, 13, 1096–1097. [Google Scholar] [CrossRef]
- Steinberg, D.H.; Staubach, S.; Franke, J.; Sievert, H. Defining Structural Heart Disease in the Adult Patient: Current Scope, Inherent Challenges and Future Directions. Eur. Heart J. Suppl. 2010, 12, E2–E9. [Google Scholar] [CrossRef]
- Palomino-Fernández, D.; Seiffert, A.P.; Gómez-Grande, A.; Jiménez López-Guarch, C.; Moreno, G.; Bueno, H.; Gómez, E.J.; Sánchez-González, P. Robustness of [18F]FDG PET/CT Radiomic Analysis in the Setting of Drug-Induced Cardiotoxicity. Comput. Methods Programs Biomed. 2024, 244, 107981. [Google Scholar] [CrossRef]
- Virizuela, J.A.; García, A.M.; de las Peñas, R.; Santaballa, A.; Andrés, R.; Beato, C.; de la Cruz, S.; Gavilá, J.; González-Santiago, S.; Fernández, T.L. SEOM Clinical Guidelines on Cardiovascular Toxicity (2018). Clin. Transl. Oncol. 2019, 21, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Palomino-Fernández, D.; Gómez-Grande, A.; Fernández-Igarza, M.; Pilkington, P.; Seiffert, A.P.; Bueno, H.; Gómez, E.J.; Sánchez-González, P. CASSIA (Cardiology Software Suite for Image Analysis): A Potential New Tool for the Evaluation of [18F]FDG PET/CT in the Setting of Infective Endocarditis. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Manabe, O.; Kroenke, M.; Aikawa, T.; Murayama, A.; Naya, M.; Masuda, A.; Oyama-Manabe, N.; Hirata, K.; Watanabe, S.; Shiga, T.; et al. Volume-Based Glucose Metabolic Analysis of FDG PET/CT: The Optimum Threshold and Conditions to Suppress Physiological Myocardial Uptake. J. Nucl. Cardiol. 2019, 26, 909–918. [Google Scholar] [CrossRef]
- Van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Liljequist, D.; Elfving, B.; Roaldsen, K.S. Intraclass Correlation—A Discussion and Demonstration of Basic Features. PLoS ONE 2019, 14, e0219854. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. 2016 ESC Position Paper on Cancer Treatments and Cardiovascular Toxicity Developed under the Auspices of the ESC Committee for Practice Guidelines. Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef]
- Armenian, S.H.; Lacchetti, C.; Barac, A.; Carver, J.; Constine, L.S.; Denduluri, N.; Dent, S.; Douglas, P.S.; Durand, J.B.; Ewer, M.; et al. Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2017, 35, 893–911. [Google Scholar] [CrossRef] [PubMed]
- Karlstaedt, A.; Barrett, M.; Hu, R.; Gammons, S.T.; Ky, B. Cardio-Oncology: Understanding the Intersections Between Cardiac Metabolism and Cancer Biology. JACC Basic Transl. Sci. 2021, 6, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Takemura, G.; Fujiwara, H. Doxorubicin-Induced Cardiomyopathy: From the Cardiotoxic Mechanisms to Management. Prog. Cardiovasc. Dis. 2007, 49, 330–352. [Google Scholar] [CrossRef] [PubMed]
- Belger, C.; Abrahams, C.; Imamdin, A.; Lecour, S. Doxorubicin-Induced Cardiotoxicity and Risk Factors. IJC Heart Vasc. 2024, 50, 101332. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomino-Fernández, D.; Bueno, H.; Jiménez-López-Guarch, C.; Moreno, G.; Seiffert, A.P.; Gómez, E.J.; Gómez-Grande, A.; Sánchez-González, P. Reduced Homogeneous Myocardial [18F]FDG Uptake in Routine PET/CT Studies as an Early Indicator of Chemotherapy-Induced Cardiotoxicity. Appl. Sci. 2024, 14, 11653. https://doi.org/10.3390/app142411653
Palomino-Fernández D, Bueno H, Jiménez-López-Guarch C, Moreno G, Seiffert AP, Gómez EJ, Gómez-Grande A, Sánchez-González P. Reduced Homogeneous Myocardial [18F]FDG Uptake in Routine PET/CT Studies as an Early Indicator of Chemotherapy-Induced Cardiotoxicity. Applied Sciences. 2024; 14(24):11653. https://doi.org/10.3390/app142411653
Chicago/Turabian StylePalomino-Fernández, David, Héctor Bueno, Carmen Jiménez-López-Guarch, Guillermo Moreno, Alexander P. Seiffert, Enrique J. Gómez, Adolfo Gómez-Grande, and Patricia Sánchez-González. 2024. "Reduced Homogeneous Myocardial [18F]FDG Uptake in Routine PET/CT Studies as an Early Indicator of Chemotherapy-Induced Cardiotoxicity" Applied Sciences 14, no. 24: 11653. https://doi.org/10.3390/app142411653
APA StylePalomino-Fernández, D., Bueno, H., Jiménez-López-Guarch, C., Moreno, G., Seiffert, A. P., Gómez, E. J., Gómez-Grande, A., & Sánchez-González, P. (2024). Reduced Homogeneous Myocardial [18F]FDG Uptake in Routine PET/CT Studies as an Early Indicator of Chemotherapy-Induced Cardiotoxicity. Applied Sciences, 14(24), 11653. https://doi.org/10.3390/app142411653