Volatile Component Composition, Retronasal Aroma Release Profile, and Sensory Characteristics of Non-Centrifugal Cane Sugar Obtained at Different Evaporation Temperatures
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. NCS Production
2.2. Volatile Components Analysis Using SPME-GC-MS
2.3. Retronasal Aroma Release Analysis Using PTR-TOF-MS
2.4. Sensory Characteristics Evaluation
2.5. Statistical Analysis
3. Results
3.1. Volatile Components of NCS
3.2. Retronasal Aroma Release Profiles of NCS
3.3. Sensory Characteristics of NCS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azlan, A.; Khoo, H.E.; Sajak, A.A.B.; Aizan Abdul Kadir, N.A.A.A.; Yusof, B.N.M.; Mahmood, Z.; Sultana, S. Antioxidant activity, nutritional and physicochemical characteristics, and toxicity of minimally refined brown sugar and other sugars. Food Sci. Nutr. 2020, 8, 5048–5062. [Google Scholar] [CrossRef] [PubMed]
- Asikin, Y.; Nakaza, Y.; Maeda, G.; Kaneda, H.; Takara, K.; Wada, K. Evaporation temperature alters physicochemical characteristics and volatile Maillard reaction products of non-centrifugal cane sugar (NCS): Comparison of polyethylene membrane and retronasal aroma simulator techniques for the extraction of volatile organic compounds in NCS. Appl. Sci. 2023, 13, 6402. [Google Scholar] [CrossRef]
- Ayustaningwarno, F.; Asikin, Y.; Amano, R.; Vu, N.T.; Hajar-Azhari, S.; Anjani, G.; Takara, K.; Wada, K. Composition of minerals and volatile organic components of non-centrifugal cane sugars from Japan and ASEAN countries. Foods 2023, 12, 1406. [Google Scholar] [CrossRef] [PubMed]
- Tahir, H.E.; Hashim, S.B.H.; Arslan, M.; Mahunu, G.K.; Shishir, M.R.I.; Zhihua, L.; Khan, S.; Mariod, A.A.; Abaker, H.A.M.; Ibrahim, H.E.; et al. Characterization and identification of the key volatile and non-volatile substances of Vangueria madagascariensis J.F. Gmel fruits (Kirkir) and exploration of their binding interactions with olfactory and taste receptors using computational chemistry methodology. Food Chem. 2024, 460, 140631. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Guo, D.; Wen, P.; Chen, H.; Hu, Y.; Li, J.; Tu, Z.; Wang, H. Insight into the aroma and taste enrichment pattern in Chinese traditional braised soup based on HS-SPME-GC-MS and HS-GC-IMS. Food Biosci. 2024, 60, 104345. [Google Scholar] [CrossRef]
- Sagawa, T.; Sakakura, M. A short-term time-series data analysis algorithm for flavor release during the start of eating. Mass Spectrom. 2023, 12, A0126. [Google Scholar] [CrossRef]
- Bojanowski, V.; Hummel, T. Retronasal perception of odors. Physiol. Behav. 2012, 107, 484–487. [Google Scholar] [CrossRef]
- Piornos, J.A.; Delgado, A.; de La Burgade, R.C.J.; Methven, L.; Balagiannis, D.P.; Koussissi, E.; Brouwer, E.; Parker, J.K. Orthonasal and retronasal detection thresholds of 26 aroma compounds in a model alcohol-free beer: Effect of threshold calculation method. Food Res. Int. 2019, 123, 317–326. [Google Scholar] [CrossRef]
- van Eck, A.; Pedrotti, M.; Brouwer, R.; Supapong, A.; Fogliano, V.; Scholten, E.; Biasioli, F.; Stieger, M. In vivo aroma release and dynamic sensory perception of composite foods. J. Agric. Food Chem. 2021, 69, 10260–10271. [Google Scholar] [CrossRef]
- Chen, L.; Yan, R.; Zhao, Y.; Sun, J.; Zhang, Y.; Li, H.; Zhao, D.; Wang, B.; Ye, X.; Sun, B. Characterization of the aroma release from retronasal cavity and flavor perception during baijiu consumption by Vocus-PTR-MS, GC×GC-MS, and TCATA analysis. LWT 2023, 174, 114430. [Google Scholar] [CrossRef]
- Ge, Y.; Li, K.; Xie, C.; Xu, Y.; Shi, C.; Hang, F.; Doherty, W.O.S. Formation of volatile and aroma compounds during the dehydration of membrane-clarified sugarcane juice to non-centrifugal sugar. Foods 2021, 10, 1561. [Google Scholar] [CrossRef] [PubMed]
- Hirose, N.; Ono, H.; Maeda, G.; Wada, K. Development of tabletop type manufacturing equipment for test production of non-centrifugal cane sugar “Kokuto” and the rise of syrup temperature during the cooling-agitation process of Kokuto production. Nippon Shokuhin Kagaku Kogaku Kaishi 2019, 66, 27–31. [Google Scholar] [CrossRef]
- Aranda-Gonzalez, I.; Perera-Pacheco, M.; Barbosa-Martín, E.; Betancur-Ancona, D. Replacing sugar with S. rebaudiana extracts on the physicochemical and sensory properties of strawberry ice cream. Cienc. Rural 2016, 46, 604–609. [Google Scholar] [CrossRef]
- Göncüoğlu Taş, N.G.; Gökmen, V. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study. Food Chem. 2017, 221, 1911–1922. [Google Scholar] [CrossRef] [PubMed]
- Asikin, Y.; Hirose, N.; Tamaki, H.; Ito, S.; Oku, H.; Wada, K. Effects of different drying–solidification processes on physical properties, volatile fraction, and antioxidant activity of non-centrifugal cane brown sugar. LWT Food Sci. Technol. 2016, 66, 340–347. [Google Scholar] [CrossRef]
- Chen, E.; Zhao, S.; Song, H.; Zhang, Y.; Lu, W. Analysis and comparison of aroma compounds of brown sugar in Guangdong, Guangxi and Yunnan using GC-O-MS. Molecules 2022, 27, 5878. [Google Scholar] [CrossRef]
- Starowicz, M.; Zieliński, H. How Maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Ning, H.; Qiu, H.; Miao, J.; Qu, Y.; Lai, K. Effects of frying and baking processing conditions changes on biogenic amines and volatile components in Jumbo squid (Dosidicus gigas). Appl. Food Res. 2022, 2, 100114. [Google Scholar] [CrossRef]
- Sasaki, T.; Yuikawa, N.; Tanihiro, N.; Michihata, T.; Enomoto, T. The effects of roasting conditions on the physical appearance traits and aroma and taste components of roasted stem tea. Food Sci. Technol. Res. 2020, 26, 643–654. [Google Scholar] [CrossRef]
- Muñoz-González, C.; Canon, F.; Feron, G.; Guichard, E.; Pozo-Bayón, M.A. Assessment wine aroma persistence by using an in vivo PTR-ToF-MS approach and its relationship with salivary parameters. Molecules 2019, 24, 1277. [Google Scholar] [CrossRef]
- Itobe, T.; Nishimura, O.; Kumazawa, K. Influence of milk on aroma release and aroma perception during consumption of coffee beverages. Food Sci. Technol. Res. 2015, 21, 607–614. [Google Scholar] [CrossRef]
- Büttner, A.; Schieberle, P. Influence of mastication on the concentrations of aroma volatiles—Some aspects of flavour release and flavour perception. Food Chem. 2000, 71, 347–354. [Google Scholar] [CrossRef]
- Lyu, J.; Chen, S.; Nie, Y.; Xu, Y.; Tang, K. Aroma release during wine consumption: Factors and analytical approaches. Food Chem. 2021, 346, 128957. [Google Scholar] [CrossRef] [PubMed]
- Januszewska, R.; Giret, E.; Clement, F.; Van Leuven, I.; Goncalves, C.; Vladislavleva, E.; Pradal, P.; Nåbo, R.; Landuyt, A.; D’Heer, G.; et al. Impact of vanilla origins on sensory characteristics of chocolate. Food Res. Int. 2020, 137, 109313. [Google Scholar] [CrossRef] [PubMed]
- Schifferstein, H.N.J.; Kudrowitz, B.M.; Breuer, C. Food perception and aesthetics—Linking sensory science to culinary practice. J. Culin. Sci. Technol. 2020, 20, 293–335. [Google Scholar] [CrossRef]
- Romano, A.; Cappellin, L.; Bogialli, S.; Pastore, P.; Navarini, L.; Biasioli, F. Monitoring in vitro and in vivo aroma release of espresso coffees with proton-transfer-reaction time-of-flight mass spectrometry. Appl. Sci. 2022, 12, 10272. [Google Scholar] [CrossRef]
- Karangwa, E.; de D. Habimana, J.; JingYang, Y.; Murekatete, N.; Zhang, X.; Masamba, K.; Duhoranimana, E.; Muhoza, B. Sensory characteristics of Maillard reaction products obtained from sunflower protein hydrolysates and different sugar types. Int. J. Food Eng. 2017, 13, 20160006. [Google Scholar] [CrossRef]
No | RI 1 | Compound | 120 °C | 130 °C | 140 °C |
---|---|---|---|---|---|
1 | 810 | 2-Methylpropanal | 0.13 ± 0.05 b 2 | 0.28 ± 0.05 b | 0.49 ± 0.09 a |
2 | 911 | 2-Methylbutanal | 0.14 ± 0.02 c | 0.48 ± 0.03 b | 0.83 ± 0.12 a |
3 | 914 | 3-Methylbutanal | 0.30 ± 0.03 b | 0.95 ± 0.09 a | 1.08 ± 0.21 a |
4 | 972 | 2,3-Butanedione | 0.11 ± 0.02 b | 0.15 ± 0.01 b | 0.24 ± 0.03 a |
5 | 1053 | 3-Hexanone | 0.03 ± 0.01 c | 0.11 ± 0.01 b | 0.25 ± 0.03 a |
6 | 1077 | Hexanal | 0.04 ± 0.01 | tr | tr |
7 | 1181 | Heptanal | 0.09 ± 0.01 a | 0.05 ± 0.01 b | tr |
8 | 1208 | Pyrazine | 0.03 ± 0.02 c | 0.12 ± 0.01 b | 0.24 ± 0.02 a |
9 | 1229 | 2-Pentylfuran | 0.07 ± 0.03 a | 0.05 ± 0.01 a | tr |
10 | 1259 | Dihydro-2-methyl-3(2H)-furanone | 0.03 ± 0.02 c | 0.10 ± 0.01 b | 0.35 ± 0.05 a |
11 | 1263 | 2-Methylpyrazine | 0.82 ± 0.21 c | 3.31 ± 0.14 b | 6.95 ± 0.48 a |
12 | 1280 | Acetoin | 0.03 ± 0.01 c | 0.06 ± 0.01 b | 0.18 ± 0.01 a |
13 | 1320 | 2,5-Dimethylpyrazine | 1.26 ± 0.17 b | 2.67 ± 0.07 a | 3.23 ± 0.43 a |
14 | 1326 | 2,6-Dimethylpyrazine | 1.68 ± 0.17 c | 3.77 ± 0.15 b | 4.77 ± 0.43 a |
15 | 1332 | 2-Ethylpyrazine | 0.12 ± 0.03 c | 0.54 ± 0.02 b | 0.98 ± 0.10 a |
16 | 1343 | 2,3-Dimethylpyrazine | 0.38 ± 0.06 c | 0.59 ± 0.03 b | 1.57 ± 0.10 a |
17 | 1384 | 2-Ethyl-6-methylpyrazine | 0.08 ± 0.01 c | 0.48 ± 0.04 b | 0.77 ± 0.09 a |
18 | 1390 | 2-Ethyl-5-methylpyrazine | 0.24 ± 0.03 b | 0.37 ± 0.07 b | 0.57 ± 0.05 a |
19 | 1403 | 2,3,5-Trimethylpyrazine | 0.09 ± 0.01 c | 0.43 ± 0.04 b | 1.17 ± 0.08 a |
20 | 1434 | 2-Ethenylpyrazine | tr | 0.10 ± 0.01 b | 0.22 ± 0.02 a |
21 | 1444 | 3-Ethyl-2,5-dimethylpyrazine | 0.18 ± 0.01 b | 0.41 ± 0.03 a | 0.22 ± 0.05 b |
22 | 1447 | Acetic acid | 1.42 ± 0.13 c | 2.76 ± 0.23 b | 6.43 ± 0.48 a |
23 | 1458 | Furfural | 0.52 ± 0.07 b | 3.11 ± 0.48 b | 14.92 ± 2.38 a |
24 | 1486 | 2-Ethenyl-6-methylpyrazine | 0.20 ± 0.02 b | 0.56 ± 0.01 a | 0.44 ± 0.08 a |
25 | 1499 | 2-Acetylfuran | 0.07 ± 0.02 b | 0.56 ± 0.06 b | 3.80 ± 0.48 a |
26 | 1517 | Benzaldehyde | 0.07 ± 0.01 c | 0.13 ± 0.01 b | 0.15 ± 0.01 a |
27 | 1534 | 2-Furanmethyl acetate | nd | tr | 0.06 ± 0.01 |
28 | 1540 | [R-(R*,R*)]-2,3-Butanediol | 0.11 ± 0.01 a | 0.07 ± 0.01 b | 0.04 ± 0.01 c |
29 | 1568 | 5-Methyl-2-furanaldehyde | 0.03 ± 0.01 b | 0.24 ± 0.05 b | 1.19 ± 0.23 a |
30 | 1577 | [S-(R*,R*)]-2,3-Butanediol | 0.25 ± 0.03 a | 0.25 ± 0.01 a | 0.34 ± 0.07 a |
31 | 1598 | 2-Acetylpyridine | tr | 0.04 ± 0.01 b | 0.14 ± 0.01 a |
32 | 1620 | Dihydro-2(3H)-furanone; butyrolactone | 0.02 ± 0.01 c | 0.13 ± 0.02 b | 0.62 ± 0.07 a |
33 | 1635 | Benzeneacetaldehyde | 0.22 ± 0.03 a | 0.19 ± 0.03 a | 0.11 ± 0.02 b |
34 | 1659 | 2-Furanmethanol | 0.52 ± 0.08 b | 1.49 ± 0.12 b | 5.98 ± 0.66 a |
35 | 1687 | 2-Acetyl-5-methylpyrazine | nd | 0.07 ± 0.02 b | 0.24 ± 0.03 a |
36 | 1712 | Pyrazinamide | nd | 0.06 ± 0.02 b | 0.28 ± 0.02 a |
37 | 1721 | 5-Methyl-2-furanmethanol | 0.08 ± 0.01 c | 0.35 ± 0.06 b | 0.97 ± 0.06 a |
38 | 1746 | 2(5H)-Furanone | 0.03 ± 0.01 c | 0.07 ± 0.01 b | 0.16 ± 0.02 a |
39 | 1838 | 2-Ethenylbenzofuran | nd | 0.04 ± 0.01 b | 0.07 ± 0.01 a |
40 | 1849 | 3-Phenylfuran | tr | 0.10 ± 0.01 b | 0.24 ± 0.01 a |
41 | 1926 | 2-Phenyl-2-butenal | nd | 0.03 ± 0.01 b | 0.11 ± 0.01 a |
42 | 1968 | 2-Acetylpyrrole | 0.11 ± 0.01 c | 0.68 ± 0.07 b | 2.35 ± 0.15 a |
43 | 2001 | 2-(Hydroxyacetyl)furan | 0.05 ± 0.01 b | 0.05 ± 0.02 b | 0.23 ± 0.08 a |
44 | 2033 | 2,5-Dimethylfuran-3,4(2H,5H)-dione | nd | 0.12 ± 0.02 b | 0.62 ± 0.10 a |
45 | >2100 | 2-Methoxy-4-vinylphenol | 0.13 ± 0.02 b | 0.12 ± 0.03 b | 0.39 ± 0.09 a |
46 | >2100 | 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one | 0.68 ± 0.16 b | 4.54 ± 0.96 b | 21.05 ± 4.17 a |
47 | >2100 | 5-Hydroxymethylfurfural | nd | 0.10 ± 0.04 b | 1.24 ± 0.50 a |
Component groups | |||||
Aldehyde (8 compounds) | 0.99 ± 0.12 b | 2.10 ± 0.19 a | 2.77 ± 0.42 a | ||
Alcohol (3 compounds) | 0.49 ± 0.06 b | 0.44 ± 0.04 b | 0.77 ± 0.15 a | ||
Ketone (3 compounds) | 0.17 ± 0.03 c | 0.32 ± 0.02 b | 0.67 ± 0.04 a | ||
Carboxylic acid (1 compound) | 1.42 ± 0.13 c | 2.76 ± 0.23 b | 6.43 ± 0.48 a | ||
Pyrazine (15 compounds) | 5.16 ± 0.69 c | 13.82 ± 0.54 b | 22.63 ± 1.84 a | ||
Furan (11 compounds) | 1.27 ± 0.21 b | 5.87 ± 0.74 b | 28.36 ± 4.36 a | ||
Furanone (3 compounds) | 0.08 ± 0.03 c | 0.30 ± 0.03 b | 1.12 ± 0.12 a | ||
Pyridine (1 compound) | nd | 0.04 ± 0.02 b | 0.14 ± 0.01 a | ||
Pyrrole (1 compound) | 0.11 ± 0.01 c | 0.68 ± 0.07 b | 2.35 ± 0.15 a | ||
Pyranone (1 compound) | 0.68 ± 0.16 b | 4.54 ± 0.96 b | 21.05 ± 4.17 a | ||
Total | 10.37 ± 1.27 c | 30.87 ± 2.75 b | 86.29 ± 7.17 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asikin, Y.; Nakaza, Y.; Oe, M.; Kaneda, H.; Maeda, G.; Takara, K.; Wada, K. Volatile Component Composition, Retronasal Aroma Release Profile, and Sensory Characteristics of Non-Centrifugal Cane Sugar Obtained at Different Evaporation Temperatures. Appl. Sci. 2024, 14, 11617. https://doi.org/10.3390/app142411617
Asikin Y, Nakaza Y, Oe M, Kaneda H, Maeda G, Takara K, Wada K. Volatile Component Composition, Retronasal Aroma Release Profile, and Sensory Characteristics of Non-Centrifugal Cane Sugar Obtained at Different Evaporation Temperatures. Applied Sciences. 2024; 14(24):11617. https://doi.org/10.3390/app142411617
Chicago/Turabian StyleAsikin, Yonathan, Yuki Nakaza, Moena Oe, Hirotaka Kaneda, Goki Maeda, Kensaku Takara, and Koji Wada. 2024. "Volatile Component Composition, Retronasal Aroma Release Profile, and Sensory Characteristics of Non-Centrifugal Cane Sugar Obtained at Different Evaporation Temperatures" Applied Sciences 14, no. 24: 11617. https://doi.org/10.3390/app142411617
APA StyleAsikin, Y., Nakaza, Y., Oe, M., Kaneda, H., Maeda, G., Takara, K., & Wada, K. (2024). Volatile Component Composition, Retronasal Aroma Release Profile, and Sensory Characteristics of Non-Centrifugal Cane Sugar Obtained at Different Evaporation Temperatures. Applied Sciences, 14(24), 11617. https://doi.org/10.3390/app142411617