Robust Control for a Slung-Mass Quadcopter Under Abrupt Velocity Changes
Abstract
:1. Introduction
Contributions
- This paper presents a robust control law to reduce oscillations caused by a slung load on a quadrotor and to stabilize a slung load in abrupt velocity changes.
- The robust technique is based on a sliding mode controller that compensates for disturbances associated with the trajectory that the vehicle follows to carry the load from one location to another.
- The main characteristic of this algorithm is to obtain the slung-mass angular position and velocity measurements (, ) to provide feedback and achieve its stabilization on the vertical axis in order to improve the performance by reducing the oscillations in outdoor real-time experiments.
2. System Modeling and Robust Control Design
2.1. Slung-Mass Quadrotor Modeling
- The air vehicle is considered as a rigid body.
- The load is rigid and its mass is constant.
- The mass is suspended under the vehicle by a rigid rod.
- The slung-mass angular position is bounded.
- The suspended mass does not rotate on its azimuthal axis.
- External disturbances such as wind and gust.
- Disturbances caused by slung-mass oscillations.
- Uncertainties not modeled in the system.
2.2. Longitudinal Dynamics Modeling
2.3. Vertical Robust Control Design ()
2.4. Longitudinal Robust Control Design ()
3. Numerical Simulations
3.1. Hover Flight
3.2. Forward Navigation
3.3. Abrupt Changes in Velocity
3.4. Comparative Result
4. Experimental Setup
5. Experimental Results
5.1. Control Without Angle Feedback
5.2. Control with Angle Feedback
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | Unmanned Aerial Vehicle |
FTNSMC | Finite-Time Neuro-Sliding Mode Control |
FOSMC | Fractional-Order Sliding Mode Control |
VTOL | Vertical Take-Off and Landing |
GPS | Global Positioning System |
MoCap | Motion Capture |
IMU | Inertial Measurement Unit |
I2C | Inter Integrated Circuit |
RTK | Real-Time Kinematic |
GNSS | Global Navigation Satellite System |
References
- Mohta, K.; Sun, K.; Liu, S.; Watterson, M.; Pfrommer, B.; Svacha, J.; Mulgaonkar, Y.; Taylor, C.J.; Kumar, V. Experiments in fast, autonomous, gps-denied quadrotor flight. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 7832–7839. [Google Scholar]
- Zhou, B.; Gao, F.; Wang, L.; Liu, C.; Shen, S. Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE Robot. Autom. Lett. 2019, 4, 3529–3536. [Google Scholar] [CrossRef]
- Pizetta, I.H.B.; Brandão, A.S.; Sarcinelli-Filho, M. Load Transportation by Quadrotors in Crowded Workspaces. IEEE Access 2020, 8, 223941–223951. [Google Scholar] [CrossRef]
- Us, K.Y.; Cevher, A.; Sever, M.; Kırlı, A. On the Effect of Slung Load on Quadrotor Performance. Procedia Comput. Sci. 2019, 158, 346–354. [Google Scholar] [CrossRef]
- Yang, S.; Xian, B.; Cai, J.; Wang, G. Finite-time convergence control for a quadrotor unmanned aerial vehicle with a slung load. IEEE Trans. Ind. Inform. 2023, 20, 605–614. [Google Scholar] [CrossRef]
- Xian, B.; Wang, S.; Yang, S. An online trajectory planning approach for a quadrotor UAV with a slung payload. IEEE Trans. Ind. Electron. 2019, 67, 6669–6678. [Google Scholar] [CrossRef]
- Ariyibi, S.O.; Tekinalp, O. Quaternion-based nonlinear attitude control of quadrotor formations carrying a slung load. Aerosp. Sci. Technol. 2020, 105, 105995. [Google Scholar] [CrossRef]
- Pizetta, I.H.B.; Brandão, A.S.; Sarcinelli-Filho, M. Avoiding obstacles in cooperative load transportation. ISA Trans. 2019, 91, 253–261. [Google Scholar] [CrossRef]
- Chai, Y.; Liang, X.; Yang, Z.; Han, J. Energy-based nonlinear adaptive control for collaborative transportation systems. Aerosp. Sci. Technol. 2022, 126, 107510. [Google Scholar] [CrossRef]
- Gimenez, J.; Gandolfo, D.C.; Salinas, L.R.; Rosales, C.; Carelli, R. Multi-objective control for cooperative payload transport with rotorcraft UAVs. ISA Trans. 2018, 80, 491–502. [Google Scholar] [CrossRef]
- Mechali, O.; Xu, L.; Xie, X. Formation Flight Control of Networked-Delayed Quadrotors for Cooperative Slung Load Transportation. In Proceedings of the 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, China, 7–10 August 2022; pp. 526–531. [Google Scholar] [CrossRef]
- Arab, F.; Shirazi, F.A.; Yazdi, M.R.H. Planning and distributed control for cooperative transportation of a non-uniform slung-load by multiple quadrotors. Aerosp. Sci. Technol. 2021, 117, 106917. [Google Scholar] [CrossRef]
- Roy, K.R.; Waghmare, L.M.; Patre, B.M. Dynamic modeling and displacement control for differential flatness of quadrotor UAV slung-load system. Int. J. Dyn. Control 2023, 11, 637–655. [Google Scholar] [CrossRef]
- Reis, J.; Yu, G.; Cabecinhas, D.; Silvestre, C. High-performance quadrotor slung load transportation with damped oscillations. Int. J. Robust Nonlinear Control 2023, 33, 10227–10256. [Google Scholar] [CrossRef]
- Ergezer, H. Multi-objective trajectory planning for slung-load quadrotor system. IEEE Access 2021, 9, 155003–155017. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, G.; Xie, W.; Zhang, W.; Silvestre, C. UDE-based Robust Control of a Quadrotor-Slung-Load System. IEEE Robot. Autom. Lett. 2023, 8, 6851–6858. [Google Scholar] [CrossRef]
- Estévez Sanz, J.; Garate Zubiaurre, G.; López Guede, J.M.; Larrea Sukia, M. Review of Aerial Transportation of Suspended-Cable Payloads with Quadrotors. Drones 2024, 8, 35. [Google Scholar] [CrossRef]
- Feng, Y.; Rabbath, C.A.; Rakheja, S.; Su, C.Y. Adaptive controller design for generic quadrotor aircraft platform subject to slung load. In Proceedings of the 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), Halifax, NS, Canada, 3–6 May 2015; pp. 1135–1139. [Google Scholar]
- Baraean, A.; Hamanah, W.M.; Bawazir, A.; Quama, M.M.; Ferik, S.E.; Baraean, S.; Abido, M.A. Optimal Nonlinear backstepping controller design of a Quadrotor-Slung load system using particle Swarm Optimization. Alex. Eng. J. 2023, 68, 551–560. [Google Scholar] [CrossRef]
- Zare, M.; Pazooki, F.; Haghighi, S.E. Hybrid controller of Lyapunov-based and nonlinear fuzzy-sliding mode for a quadrotor slung load system. Eng. Sci. Technol. Int. J. 2022, 29, 101038. [Google Scholar] [CrossRef]
- El Ferik, S.; Al-Qahtani, F.M.; Saif, A.W.A.; Al-Dhaifallah, M. Robust FOSMC of quadrotor in the presence of slung load. ISA Trans. 2023, 139, 106–121. [Google Scholar] [CrossRef]
- Bingöl, Ö.; Güzey, H.M. Finite-time neuro-sliding-mode controller design for quadrotor uavs carrying suspended payload. Drones 2022, 6, 311. [Google Scholar] [CrossRef]
- Yu, G.; Cabecinhas, D.; Cunha, R.; Silvestre, C. Nonlinear backstepping control of a quadrotor-slung load system. IEEE/ASME Trans. Mechatron. 2019, 24, 2304–2315. [Google Scholar] [CrossRef]
- Ding, F.; Sun, C.; He, S. Anti-Swing Control for Quadrotor-Slung Load Transportation System with Underactuated State Constraints. Sensors 2023, 23, 8995. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Wu, Z.; Chou, W. Harmonic extended state observer based anti-swing attitude control for quadrotor with slung load. Electronics 2018, 7, 83. [Google Scholar] [CrossRef]
- Dalwadi, N.; Deb, D.; Muyeen, S. Observer based rotor failure compensation for biplane quadrotor with slung load. Ain Shams Eng. J. 2022, 13, 101748. [Google Scholar] [CrossRef]
- Yi, K.; Liang, X.; He, Y.; Yang, L.; Han, J. Active-model-based control for the quadrotor carrying a changed slung load. Electronics 2019, 8, 461. [Google Scholar] [CrossRef]
- Yu, G.; Xie, W.; Cabecinhas, D.; Cunha, R.; Silvestre, C. Adaptive control with unknown mass estimation for a quadrotor-slung-load system. ISA Trans. 2023, 133, 412–423. [Google Scholar] [CrossRef]
- Kong, L.; Reis, J.; He, W.; Yu, X.; Silvestre, C. On dynamic performance control for a quadrotor-slung-load system with unknown load mass. Automatica 2024, 162, 111516. [Google Scholar] [CrossRef]
- Sun, H.; Gu, X.; Luo, S.; Liang, Y.; Bai, J. Robust stabilization technique for a quadrotor slung-load system using sliding mode control. J. Phys. Conf. Ser. 2022, 2232, 012013. [Google Scholar] [CrossRef]
- Mosco-Luciano, A.; Castro-Linares, R.; Rodriguez-Cortes, H. Trajectory tracking control for a quadrotor with a slung load. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; pp. 322–328. [Google Scholar]
- Ergezer, H.; Leblebicioğlu, K. Control structure design with constraints for a slung load quadrotor system. Meas. Control 2024, 57, 16–29. [Google Scholar] [CrossRef]
- Kui, Y.; Feng, G.; Liying, Y.; Yuqing, H.; Jianda, H. Sliding mode control for a quadrotor slung load system. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 3697–3703. [Google Scholar]
- Aldhizer, T.; Morock, A.; Hughes, K.; Lanzerotti, M.; Christoff, S.; Lintelmann, S.; Capps, J. Suspended load swing stabilization. In Proceedings of the 2020 IEEE Integrated STEM Education Conference (ISEC), Princeton, NJ, USA, 1 August 2020; pp. 1–6. [Google Scholar]
- Peris, C.; Norton, M.; Khoo, S. Adaptive Multi-Surface Sliding Mode Control with Radial Basis Function Neural Networks and Reinforcement Learning for Multirotor Slung Load Systems. Electronics 2024, 13, 2424. [Google Scholar] [CrossRef]
- Guerrero-Sánchez, M.E.; Lozano, R.; Castillo, P.; Hernández-González, O.; García-Beltrán, C.; Valencia-Palomo, G. Nonlinear control strategies for a UAV carrying a load with swing attenuation. Appl. Math. Model. 2021, 91, 709–722. [Google Scholar] [CrossRef]
- Arizaga, J.M.; Miranda-Moya, A.; Castañeda, H.; Castillo, P. Observer-based adaptive control for slung payload stabilization with a fully-actuated multirotor UAV. ISA Trans. 2024, 147, 109–117. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value | Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|---|---|
M | kg | 2 m | 3 m | ||||
m | kg | 5 m | 0 m | ||||
g | 0 rad | rad | |||||
l | m | 0 rad/s | rad | d | m |
Parameter | Value | Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|---|---|
Wind | 10 m/s | Gust | 20 m/s | Cloud Cover | 73% | Visibility | 16 km |
Wind Dir. | East | Temperature | 24 °C | Precip Prob | 4% | Weather | Cloudy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar, S.; Flores, J.; González-Hernández, I.; Rosales-Luengas, Y.; Lozano, R. Robust Control for a Slung-Mass Quadcopter Under Abrupt Velocity Changes. Appl. Sci. 2024, 14, 11592. https://doi.org/10.3390/app142411592
Salazar S, Flores J, González-Hernández I, Rosales-Luengas Y, Lozano R. Robust Control for a Slung-Mass Quadcopter Under Abrupt Velocity Changes. Applied Sciences. 2024; 14(24):11592. https://doi.org/10.3390/app142411592
Chicago/Turabian StyleSalazar, Sergio, Jonathan Flores, Iván González-Hernández, Yukio Rosales-Luengas, and Rogelio Lozano. 2024. "Robust Control for a Slung-Mass Quadcopter Under Abrupt Velocity Changes" Applied Sciences 14, no. 24: 11592. https://doi.org/10.3390/app142411592
APA StyleSalazar, S., Flores, J., González-Hernández, I., Rosales-Luengas, Y., & Lozano, R. (2024). Robust Control for a Slung-Mass Quadcopter Under Abrupt Velocity Changes. Applied Sciences, 14(24), 11592. https://doi.org/10.3390/app142411592