Nonlinear Analysis and Solution for an Overhead Line Magnetic Energy Harvester with an Active Rectifier
Abstract
:1. Introduction
2. The Applied Methodology
2.1. State Analysis and Equivalent Circuits
2.2. The Froelich Equation Review
2.3. Analysis: Power Transfer Window
2.4. Analysis: Output Current and Power
2.5. Analysis: Maximum Power Conditions
3. Comparison with the Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Time (continuous) | t |
State 1 termination instant | t1 |
State 2 termination instant | t2 |
Flux density zero crossing instant | tZ |
Power line angular frequency | |
Flux density | |
Saturation flux density | Bs |
Field intensity | |
Saturation field intensity | Hs |
Froelich coefficients | a, b |
Number of turns | N |
Magnetic path length | lc |
Magnetic core area | Ac |
Line (primary) current instantaneous | i1(t) |
Line (primary) current amplitude | I1m |
Secondary current instantaneous | i2(t) |
Secondary current amplitude | I2m |
Magnetizing current, (instantaneous) | im(t) |
Rectifiers’ input (AC side) voltage | |
Rectifiers’ input (AC side) current | |
CVL voltage | Vb |
CVL current | |
Average output power | Po |
Appendix A
References
- Kang, S.; Yang, S.; Kim, H. Non-intrusive voltage measurement of ac power lines for smart grid system based on electric field energy harvesting. Electron. Lett. 2017, 53, 181–183. [Google Scholar] [CrossRef]
- Moghe, R.; Lambert, F.C.; Divan, D. Smart “stick-on” sensors for the smart grid. IEEE Trans. Smart Grid 2012, 3, 241–252. [Google Scholar] [CrossRef]
- Moghe, R.; Iyer, A.R.; Lambert, F.C.; Divan, D.M. A low-cost wireless voltage sensor for monitoring MV/HV utility assets. IEEE Trans. Smart Grid 2014, 5, 2002–2009. [Google Scholar] [CrossRef]
- Gu, I.Y.H.; Sistiaga, U.; Berlijn, S.M.; Fahlstrom, A. Online detection of snow coverage and swing angles of electrical insulators on power transmission lines using videos. In Proceedings of the 16th IEEE International Conference on Image Processing (ICIP 2009), Cairo, Egypt, 7–10 November 2009; pp. 3249–3252. [Google Scholar] [CrossRef]
- Zhong, Y.-P.; Zuo, Q.; Zhou, Y.; Zhang, C. A new image-based algorithm for icing detection and icing thickness estimation for transmission lines. In Proceedings of the IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 15–19 July 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Riba, J.-R.; Moreno-Eguilaz, M.; Bogarra, S. Energy Harvesting Methods for Transmission Lines: A Comprehensive Review. Appl. Sci. 2022, 12, 10699. [Google Scholar] [CrossRef]
- Moon, J.; Leeb, S.B. Power Electronic Circuits for Magnetic Energy Harvesters. IEEE Trans. Power Electron. 2016, 31, 270–279. [Google Scholar] [CrossRef]
- Enayati, J.; Asef, P. Review and Analysis of Magnetic Energy Harvesters: A Case Study for Vehicular Applications. IEEE Access 2022, 10, 79444–79457. [Google Scholar] [CrossRef]
- Deng, Z.; Dapino, M.J. Review of magnetostrictive vibration energy harvesters. Smart Mater. Struct. 2017, 26, 103001. [Google Scholar] [CrossRef]
- Abramovitz, A.; Shwartsas, M.; Kuperman, A. Nonlinear Analysis and Closed-Form Solution for Overhead Line Magnetic Energy Harvester Behavior. Appl. Sci. 2024, 14, 9146. [Google Scholar] [CrossRef]
- Moon, J.; Leeb, S.B. Wireless sensors for electromechanical system diagnostics. IEEE Trans. Instr. Meas. 2018, 67, 2235–2246. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Duan, N.; He, Z. An energy management method for magnetic field energy harvesters under wide-range current in railway electrification systems. IEEE Trans. Ind. Electron. 2024, 71, 5360–5369. [Google Scholar] [CrossRef]
- Monagle, D.; Ponce, E.A.; Leeb, S.B. Rule the Joule: An energy management design guide for self-powered sensors. IEEE Sens. J. 2024, 24, 6–15. [Google Scholar] [CrossRef]
- Suntio, T.; Viinamaki, J.; Jokipii, J.; Messo, T.; Kuperman, A. Dynamic characterization of power electronic interfaces. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 949–961. [Google Scholar] [CrossRef]
- Monagle, D.; Ponce, E.; Leeb, S.B. Generalized analysis method for magnetic energy harvesters. IEEE Trans. Power Electron. 2022, 37, 15764–15773. [Google Scholar] [CrossRef]
- Li, Y.; Duan, N.; Liu, Z.; Hu, J.; He, Z. Impedance-matching-based maximum power tracking for magnetic field energy harvesters using active rectifiers. IEEE Trans. Ind. Electron. 2023, 70, 10730–10739. [Google Scholar] [CrossRef]
- Chen, F.; Yang, C.; Guo, Z.; Wang, Y.; Ma, X. A magnetically controlled current transformer for stable energy harvesting. IEEE Trans. Power Deliv. 2023, 38, 212–221. [Google Scholar] [CrossRef]
- Kuperman, A.; Averbukh, M.; Lineykin, S. Maximum power point matching versus maximum power point tracking for solar generators. Renew. Sustain. Energy Rev. 2013, 19, 11–17. [Google Scholar] [CrossRef]
- Moon, J.; Leeb, S.B. Analysis Model for Magnetic Energy Harvesters. IEEE Trans. Power Electron. 2015, 30, 4302–4311. [Google Scholar] [CrossRef]
- Gao, M.; Yi, L.; Moon, J. Mathematical modeling and validation of saturating and clampable cascaded magnetics for magnetic energy harvesting. IEEE Trans. Power Electron. 2023, 38, 3455–3468. [Google Scholar] [CrossRef]
- Vos, M.J. A magnetic core permeance model for inductive power harvesting. IEEE Trans. Power Electron. 2020, 35, 3627–3635. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Yang, H.; Duan, N.; He, Z. An accurate model of magnetic energy harvester in the saturated region for harvesting maximum power: Analysis, design and experimental verification. IEEE Trans. Ind. Electron. 2023, 70, 276–285. [Google Scholar] [CrossRef]
- Abramovitz, A.; Shvartsas, M.; Orfanoudakis, G.I.; Kuperman, A. Output Characteristics of Passive Magnetic Energy Harvester Feeding a Constant-Voltage-Type Load. IEEE J. Emerg. Sel. Top. Power Electron. 2024, in press. [Google Scholar] [CrossRef]
- Abramovitz, A.; Shvartsas, M.; Kuperman, A. Enhanced Maximum Power Point Reaching Method for Passive Magnetic Energy Harvesters Operating Under Low Primary Currents. IEEE Trans. Power Electron. 2024, 39, 6619–6623. [Google Scholar] [CrossRef]
- Abramovitz, A.; Shvartsas, M.; Kuperman, A. On the Maximum Power of Passive Magnetic Energy Harvesters Feeding Constant Voltage Loads Under High Primary Currents. IEEE Trans. Power Electron. 2024, 39, 12076–12080. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramovitz, A.; Shvartsas, M.; Kuperman, A. Nonlinear Analysis and Solution for an Overhead Line Magnetic Energy Harvester with an Active Rectifier. Appl. Sci. 2024, 14, 11178. https://doi.org/10.3390/app142311178
Abramovitz A, Shvartsas M, Kuperman A. Nonlinear Analysis and Solution for an Overhead Line Magnetic Energy Harvester with an Active Rectifier. Applied Sciences. 2024; 14(23):11178. https://doi.org/10.3390/app142311178
Chicago/Turabian StyleAbramovitz, Alexander, Moshe Shvartsas, and Alon Kuperman. 2024. "Nonlinear Analysis and Solution for an Overhead Line Magnetic Energy Harvester with an Active Rectifier" Applied Sciences 14, no. 23: 11178. https://doi.org/10.3390/app142311178
APA StyleAbramovitz, A., Shvartsas, M., & Kuperman, A. (2024). Nonlinear Analysis and Solution for an Overhead Line Magnetic Energy Harvester with an Active Rectifier. Applied Sciences, 14(23), 11178. https://doi.org/10.3390/app142311178