Prediction of Dry Mouth Condition Using Radiomics Features from Tongue Diagnosis Image
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Image Pre-Processing
2.3. Image Feature Extraction
2.4. Multi-Linear Regression Analysis Using Machine Learning
3. Results
3.1. Image Acquisition and Saliva Secretion Measurement
3.2. Image Sharpness
3.3. Image Features
3.4. Multi-Linear Regression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sutarjo, F.N.A.; Rinthani, M.F.; Brahmanikanya, G.L.; Parmadiati, A.E.; Radhitia, D.; Mahdani, F.Y. Common precipitating factors of xerostomia in elderly. J. Health Allied Sci. NU 2024, 14, 011–016. [Google Scholar] [CrossRef]
- Yoo, M.H.; Rhee, Y.; Jung, J.; Lee, S.; Moon, J.; Mo, J.; Chung, P. TRPV1 regulates inflammatory process in the tongue of surgically induced xerostomia mouse. Head Neck 2020, 42, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Tanasiewicz, M.; Hildebrandt, T.; Obersztyn, I. Xerostomia of various etiologies: A review of the literature. Adv. Clin. Exp. Med. Off. Organ Wroc. Med. Univ. 2016, 25, 199–206. [Google Scholar] [CrossRef]
- Dodds, M.W.J.; Ben Haddou, M.; Day, J.E.L. The effect of gum chewing on xerostomia and salivary flow rate in elderly and medically compromised subjects: A systematic review and meta-analysis. BMC Oral Health 2023, 23, 406. [Google Scholar] [CrossRef]
- Sardellitti, L.; Bortone, A.; Filigheddu, E.; Serralutzu, F.; Milia, E.P. Xerostomia: From Pharmacological Treatments to Traditional Medicine—An Overview on the Possible Clinical Management and Prevention Using Systemic Approaches. Curr. Oncol. 2023, 30, 4412–4426. [Google Scholar] [CrossRef]
- Ornelas, D.A.T.; Vela, M.O.R.; Palencia, P.G. Xerostomia: Etiology, diagnosis, prevalence, and treatment literature review. Int. J. Appl. Dent. Sci. 2023, 9, 75–79. [Google Scholar] [CrossRef]
- Bhansali, M.; Modak, R.; Lihe, V. Xerostomia and treatment approaches: An overview. IOSR J. Dent. Med. Sci. 2020, 19, 31–37. [Google Scholar]
- Hahnel, S.; Schwarz, S.; Zeman, F.; Schäfer, L.; Behr, M. Prevalence of xerostomia and hyposalivation and their association with quality of life in elderly patients in dependence on dental status and prosthetic rehabilitation: A pilot study. J. Dent. 2014, 42, 664–670. [Google Scholar] [CrossRef]
- Villa, A.; Connell, C.L.; Abati, S. Diagnosis and management of xerostomia and hyposalivation. Ther. Clin. Risk Manag. 2014, 11, 45–51. [Google Scholar] [CrossRef]
- Wang, R.; Wu, F.; Lu, H.; Wei, B.; Feng, G.; Li, G.; Liu, M.; Yan, H.; Zhu, J.; Zhang, Y.; et al. Definitive intensity-modulated radiation therapy for nasopharyngeal carcinoma: Long-term outcome of a multicenter prospective study. J. Cancer Res. Clin. Oncol. 2012, 139, 139–145. [Google Scholar] [CrossRef]
- Feltsan, T.; Stanko, P.; Mracna, J. Sjögren´s syndrome in present. Bratisl. Med. J. 2012, 113, 514–516. [Google Scholar] [CrossRef] [PubMed]
- Jeganathan, S.; Carey, H.; Purnomo, J. Impact of xerostomia on oral health and quality of life among adults infected with HIV-1. Spéc. Care Dent. 2012, 32, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, S.; Prasad, S.; Gupta, A.; Singh, V.; Vb, S. Oral manifestations in type-2 diabetes and related complications. Indian J. Endocrinol. Metab. 2012, 16, 777–779. [Google Scholar] [CrossRef]
- Oğütcen-Toller, M.; Gedik, R.; Gedik, S.; Göze, F. Sjögren’s syndrome: A case report and review of the literature. West Indian Med. J. 2012, 61, 305–308. [Google Scholar] [CrossRef]
- Riley, C.K.; Terezhalmy, G.T. The patient with hypertension. Quintessence Int. 2001, 32, 671–690. [Google Scholar] [PubMed]
- Vissink, A.; Mitchell, J.B.; Baum, B.J.; Limesand, K.H.; Jensen, S.B.; Fox, P.C.; Elting, L.S.; Langendijk, J.A.; Coppes, R.P.; Reyland, M.E. Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: Successes and barriers. Int. J. Radiat. Oncol. 2010, 78, 983–991. [Google Scholar] [CrossRef]
- Altamini, M.A. Update knowledge of dry mouth- A guideline for dentists. Afr. Health Sci. 2014, 14, 736–742. [Google Scholar]
- Stankeviciene, I.; Stangvaltaite-Mouhat, L.; Aleksejuniene, J.; Mieliauskaite, D.; Talijuniene, I.; Butrimiene, I.; Bendinskaite, R.; Puriene, A. Oral health status, related behaviours and perceived stress in xerostomia, Sicca and Sjögren’s syndromes patients-a cross-sectional study. BMC Oral Health 2024, 24, 454. [Google Scholar] [CrossRef]
- Bhatnagar, V.; Bansod, P.P. Challenges and solutions in automated tongue diagnosis techniques: A review. Crit. Rev. Biomed. Eng. 2022, 50, 47–63. [Google Scholar] [CrossRef]
- Fukushima, Y.; Sano, Y.; Isozaki, Y.; Endo, M.; Tomoda, T.; Kitamura, T.; Sato, T.; Kamijo, Y.; Haga, Y.; Yoda, T. A pilot clinical evaluation of oral mucosal dryness in dehydrated patients using a moisture-checking device. Clin. Exp. Dent. Res. 2019, 5, 116–120. [Google Scholar] [CrossRef]
- Fukushima, Y.; Yoda, T.; Araki, R.; Sakai, T.; Toya, S.; Ito, K.; Funayama, S.; Enoki, Y.; Sato, T. Evaluation of oral wetness using an improved moisture-checking device for the diagnosis of dry mouth. Oral Sci. Int. 2017, 14, 33–36. [Google Scholar] [CrossRef]
- Al-Ameen, Z.; Muttar, A.; Al-Badrani, G. Improving the Sharpness of Digital Image Using an Amended Unsharp Mask Filter. Int. J. Image Graph. Signal Process. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Bianconi, F.; Palumbo, I.; Spanu, A.; Nuvoli, S.; Fravolini, M.L.; Palumbo, B. PET/CT radiomics in lung cancer: An overview. Appl. Sci. 2020, 10, 1718. [Google Scholar] [CrossRef]
- Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef]
- Galloway, M.M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 1975, 4, 172–179. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, Y.; Jin, Q. Radiomics and Its Feature Selection: A Review. Symmetry 2023, 15, 1834. [Google Scholar] [CrossRef]
- Sebastian, V.; Bino, A. Unnikrishnan, and Kannan Balakrishnan. Gray level co-occurrence matrices: Generalisation and some new features. arXiv 2012, arXiv:1205.4831. [Google Scholar]
- Dash, S.; Senapati, M.R. Gray level run length matrix based on various illumination normalization techniques for texture classification. Evol. Intell. 2021, 14, 217–226. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Gemechu, W.F.; Sitek, W.; Batalha, G.F. Improving Hardenability Modeling: A Bayesian Optimization Approach to Tuning Hyperparameters for Neural Network Regression. Appl. Sci. 2024, 14, 2554. [Google Scholar] [CrossRef]
- Bots, C.P.; Beest, A.V.; Brand, H.S. The assessment of oral dryness by photographic appearance of the tongue. Br. Dent. J. 2014, 217, E3. [Google Scholar] [CrossRef] [PubMed]
- Joshi Manisha, S.; Umadevi, V.; Akshitha Raj, B.N. Computerized pragmatic assessment of prakriti dosha using tongue images: Pilot study. Indian J. Sci. Technol. 2020, 13, 4679–4698. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, B.; Yang, Z.; Wang, H.; Zhang, D. Statistical analysis of tongue images for feature extraction and diagnostics. IEEE Trans. Image Process. 2013, 22, 5336–5347. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D. A high quality color imaging system for computerized tongue image analysis. Expert Syst. Appl. 2013, 40, 5854–5866. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.J.; Li, Q. Tongue tumour detection in medical hyperspectral images. Sensors 2012, 12, 162–174. [Google Scholar] [CrossRef]
- Tania, M.H.; Lwin, K.T.; Hossain, M.A. Computational complexity of image processing algorithms for an intelligent mobile enabled tongue diagnosis scheme. In Proceedings of the 10th International Conference on Software, Knowledge, Information Management & Applications, Chengdu, China, 15–16 December 2016; pp. 29–36. [Google Scholar]
- Hu, M.-C.; Lan, K.-C.; Fang, W.-C.; Huang, Y.-C.; Ho, T.-J.; Lin, C.-P.; Yeh, M.-H.; Raknim, P.; Lin, Y.-H.; Cheng, M.-H.; et al. Automated tongue diagnosis on the smartphone and its applications. Comput. Methods Programs Biomed. 2019, 174, 51–64. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, K.; Zhang, D.; Pang, B.; Huang, B. Computer aided tongue diagnosis system. In Proceedings of the 27th Annual Conference on Engineering in Medicine & Biology Society, Shanghai, China, 17–18 January 2005; pp. 6754–6757. [Google Scholar]
- Pang, B.; Zhang, D.; Li, N.; Wang, K. Computerized tongue diagnosis based on Bayesian networks. IEEE Trans. Biomed. Eng. 2004, 51, 1803–1810. [Google Scholar] [CrossRef]
- Jiang, T.; Hu, X.-J.; Yao, X.-H.; Tu, L.-P.; Huang, J.-B.; Ma, X.-X.; Cui, J.; Wu, Q.-F.; Xu, J.-T. Tongue image quality assessment based on a deep convolutional neural network. BMC Med. Inform. Decis. Mak. 2021, 21, 147. [Google Scholar] [CrossRef]
- Koo, K.-M.; Cha, E.-Y. Image recognition performance enhancements using image normalization. Hum.-Centric Comput. Inf. Sci. 2017, 7, 33. [Google Scholar] [CrossRef]
- Santos, M.S.; Soares, J.P.; Abreu, P.H.; Araujo, H.; Santos, J. Cross-validation for imbalanced datasets: Avoiding overoptimistic and overfitting approaches [research frontier]. IEEE Comput. Intell. Mag. 2018, 13, 59–76. [Google Scholar] [CrossRef]
- Mrilaya, D.; Pervetaneni, P.; Aleperi, G. An Approach for tongue diagnosing with sequential image processing method. Int. J. Comput. Theory Eng. 2012, 4, 322–328. [Google Scholar]
- Mrilaya, D.; Pervetaneni, P.; Aleperi, G. Tongue diagnosing with sequential image enhancement methods method. Int. J. Eng. Adv. Technol. 2013, 2, 831–835. [Google Scholar]
- Mrilaya, D.; Pervetaneni, P.; Aleperi, G. Computer aided image enhancement of tongue for diagnosis in ayurvedic treatment. Appl. Med. Inform. 2014, 34, 46–56. [Google Scholar]
- Pascadopoli, M.; Zampetti, P.; Nardi, M.G.; Pellegrini, M.; Scribante, A. Smartphone Applications in Dentistry: A Scoping Review. Dent. J. 2023, 11, 243. [Google Scholar] [CrossRef]
- Lee, J.; Bae, S.-R.; Noh, H.-K. Commercial artificial intelligence lateral cephalometric analysis: Part 2—Effects of human examiners on artificial intelligence performance, a pilot study. J. Clin. Pediatr. Dent. 2023, 47, 130–141. [Google Scholar] [CrossRef]
- Galloway, M.M. Texture analysis using grey level run lengths. Nasa Sti/Recon Tech. Rep. N 1974, 75, 18555. [Google Scholar]
- Thibault, G.; Fertil, B.; Navarro, C.; Pereira, S.; Mari, J. Texture indexes and gray level size zone matrix: Application to cell nuclei classification. In Proceedings of the 10th International Conference on Pattern Recognition and Information Processing, Minsk, Belarus, 19–21 May 2009; pp. 140–145. [Google Scholar]
- Tixier, F.; Hatt, M.; Le Rest, C.C.; Le Pogam, A.; Corcos, L.; Visvikis, D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J. Nucl. Med. 2012, 53, 693–700. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, S.-H.; Lee, S.J.; Lee, M.-J.; Chung, P.-S.; Kim, H.S. Prediction of Dry Mouth Condition Using Radiomics Features from Tongue Diagnosis Image. Appl. Sci. 2024, 14, 10118. https://doi.org/10.3390/app142210118
Ahn S-H, Lee SJ, Lee M-J, Chung P-S, Kim HS. Prediction of Dry Mouth Condition Using Radiomics Features from Tongue Diagnosis Image. Applied Sciences. 2024; 14(22):10118. https://doi.org/10.3390/app142210118
Chicago/Turabian StyleAhn, Sun-Hee, Sang Joon Lee, Mi-Jung Lee, Phil-Sang Chung, and Hyeon Sik Kim. 2024. "Prediction of Dry Mouth Condition Using Radiomics Features from Tongue Diagnosis Image" Applied Sciences 14, no. 22: 10118. https://doi.org/10.3390/app142210118
APA StyleAhn, S.-H., Lee, S. J., Lee, M.-J., Chung, P.-S., & Kim, H. S. (2024). Prediction of Dry Mouth Condition Using Radiomics Features from Tongue Diagnosis Image. Applied Sciences, 14(22), 10118. https://doi.org/10.3390/app142210118