Shape-Memory Property Acting as a Switch to Change the Surface Property of the Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of 3Brunched-Chlorinated Poly(caprolactone) (3b-PCL-Cl)
2.3. Addition Reaction of 3b-PCL-Cl to the Primary Alcohol at the Ends of the Polymer
2.4. Preparation of Shape-Memory Film Using Acrylated 3b-PCL-Cl
2.5. Atom Transfer Radical Polymerization of N-Isopropylacrylamide Grafted 3b-PCL-Cl Film
2.6. Crystallinity Evaluation of Film Samples
2.7. Evaluation of Shape-Memory Properties of Films by Graft Polymerization
2.8. Observation of Hydrophilicity–Hydrophobicity by Contact Angle Measurement on the Film Surface
3. Results
3.1. Preparation of Polyester Films for the Graft Polymerization of PNIPAAm
3.2. Surface Analysis of PNIPAAm-Grafted Polyester Composite
3.3. Contact Angle of PNIPAAm-Grafted Polyester Composite
3.4. Elucidating the Shape-Memory Mechanism of PNIPAAm-Grafted Polyester Composite
3.5. Influence of PNIPAAm Grafting onto Polyester Films on Shape-Memory Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pech-Cohuo, S.C.; de Atocha Dzul-Cervantes, M.A.; Pérez-Pacheco, E.; Rosado, J.A.C.; Chim-Chi, Y.A.; Ríos-Soberanis, C.R.; Cuevas-Carballo, Z.B.; Uc-Cayetano, E.G.; Can-Herrera, L.A.; Ortíz-Fernández, A.; et al. Effect of Clays Incorporation on Properties of Thermoplastic Starch/Clay Composite Bio-Based Polymer Blends. Sci. Rep. 2024, 14, 19669. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Ikedo, Y.; Asoh, T.-A.; Ishihara, R.; Kikuchi, A. Fabrication of Hybrid Capsules via CaCO3 Crystallization on Degradable Coacervate Droplets. Langmuir 2018, 34, 3981–3986. [Google Scholar] [CrossRef] [PubMed]
- Pekdemir, M.E.; Özen Öner, E.; Kök, M.; Cherkezova, A. Thermo-Responsive Shape Memory Polymer Blends Based on Polylactic Acid and Polyethylene Glycol. Macromol. Res. 2024. [Google Scholar] [CrossRef]
- Öner, E.Ö.; Kök, M.; Pekdemir, M.E.; Aydoğmuş, E.; Saydam, S.; Aydoğdu, Y. Production of Smart Polymer Blend Filament from Waste PET Obtained Water Bottles: Investigation of Thermal and Shape Memory Behavior. Macromol. Res. 2024. [Google Scholar] [CrossRef]
- Hoshi, T.; Sawaguchi, T.; Konno, T.; Takai, M.; Ishihara, K. Preparation of Molecular Dispersed Polymer Blend Composed of Polyethylene and Poly(Vinyl Acetate) by in Situ Polymerization of Vinyl Acetate Using Supercritical Carbon Dioxide. Polymer 2007, 48, 1573–1580. [Google Scholar] [CrossRef]
- Ishihara, R.; Tanabe, K.; Inomata, S.; Matsui, R.; Kitane, R.; Hosokawa, K.; Maeda, M.; Kikuchi, A. Fabrication of Storable Surface-Functionalized Power-Free Microfluidic Chip for Sensitive MicroRNA Detection Utilizing Ultraviolet Grafting. Ind. Eng. Chem. Res. 2020, 59, 10464–10468. [Google Scholar] [CrossRef]
- Psarra, E.; König, U.; Ueda, Y.; Bellmann, C.; Janke, A.; Bittrich, E.; Eichhorn, K.-J.; Uhlmann, P. Nanostructured Biointerfaces: Nanoarchitectonics of Thermoresponsive Polymer Brushes Impact Protein Adsorption and Cell Adhesion. ACS Appl. Mater. Interfaces 2015, 7, 12516–12529. [Google Scholar] [CrossRef]
- Li, T.; Chen, S.; Li, H.; Li, Q.; Wu, L. Preparation of an Ion-Imprinted Fiber for the Selective Removal of Cu2+. Langmuir 2011, 27, 6753–6758. [Google Scholar] [CrossRef] [PubMed]
- Tymetska, S.; Shymborska, Y.; Stetsyshyn, Y.; Budkowski, A.; Bernasik, A.; Awsiuk, K.; Donchak, V.; Raczkowska, J. Thermoresponsive Smart Copolymer Coatings Based on P(NIPAM-Co-HEMA) and P(OEGMA-Co-HEMA) Brushes for Regenerative Medicine. ACS Biomater. Sci. Eng. 2023, 9, 6256–6272. [Google Scholar] [CrossRef]
- Freichels, H.; Alaimo, D.; Auzély-Velty, R.; Jérôme, C. α-Acetal, ω-Alkyne Poly(Ethylene Oxide) as a Versatile Building Block for the Synthesis of Glycoconjugated Graft-Copolymers Suited for Targeted Drug Delivery. Bioconjugate Chem. 2012, 23, 1740–1752. [Google Scholar] [CrossRef]
- Boday, D.J.; Loy, D.A. Strengthening Silica Aerogels with Surface Initiated ATRP Cross-Linked Poly(Methyl Methacrylate). J. Non-Cryst. Solids 2015, 427, 114–119. [Google Scholar] [CrossRef]
- Wang, J.-S.; Matyjaszewski, K. Controlled/“living” Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. J. Am. Chem. Soc. 1995, 117, 5614–5615. [Google Scholar] [CrossRef]
- Yakushiji, T.; Sakai, K.; Kikuchi, A.; Aoyagi, T.; Sakurai, Y.; Okano, T. Effects of Cross-Linked Structure on Temperature-Responsive Hydrophobic Interaction of Poly(N-Isopropylacrylamide) Hydrogel-Modified Surfaces with Steroids. Anal. Chem. 1999, 71, 1125–1130. [Google Scholar] [CrossRef]
- Okano, T.; Yamada, N.; Okuhara, M.; Sakai, H.; Sakurai, Y. Mechanism of Cell Detachment from Temperature-Modulated, Hydrophilic-Hydrophobic Polymer Surfaces. Biomaterials 1995, 16, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, K.; Shohbuke, E.; Kuroda, Y.; Kobayashi, Y. Contamination Control of Polymer Films by Two Atmospheric Pressure Plasma Jet Treatments. Polym. J. 2016, 48, 889–896. [Google Scholar] [CrossRef]
- Kasgoz, H.; Ozbas, Z.; Esen, E.; Sahin, C.P.; Gurdag, G. Removal of Copper(II) Ions with a Thermoresponsive Cellulose-g-poly(N-isopropyl Acrylamide) Copolymer. J. Appl. Polym. Sci. 2013, 130, 4440–4448. [Google Scholar] [CrossRef]
- Gupta, S.; Janata, M.; Čadová, E.; Raus, V. Straightforward Synthesis of Complex Polymeric Architectures with Ultra-High Chain Density. Chem. Sci. 2024, 15, 12739–12753. [Google Scholar] [CrossRef]
- Yoshida, T.; Hoshi, T.; Aoyagi, T. Molecular Design of Reactive Polycaprolactone That Can Be Induced into Shape-Memory Materials Promotes Further Functionalization. Polym. J. 2024, in press. [Google Scholar] [CrossRef]
- Mori, T.; Okamoto, K.; Endo, H.; Hill, J.P.; Shinoda, S.; Matsukura, M.; Tsukube, H.; Suzuki, Y.; Kanekiyo, Y.; Ariga, K. Mechanical Tuning of Molecular Recognition to Discriminate the Single-Methyl-Group Difference between Thymine and Uracil. J. Am. Chem. Soc. 2010, 132, 12868–12870. [Google Scholar] [CrossRef]
- Izawa, H.; Kawakami, K.; Sumita, M.; Tateyama, Y.; Hill, J.P.; Ariga, K. β-Cyclodextrin-Crosslinked Alginate Gel for Patient-Controlled Drug Delivery Systems: Regulation of Host–Guest Interactions with Mechanical Stimuli. J. Mater. Chem. B 2013, 1, 2155. [Google Scholar] [CrossRef]
- Ishikawa, D.; Mori, T.; Yonamine, Y.; Nakanishi, W.; Cheung, D.L.; Hill, J.P.; Ariga, K. Mechanochemical Tuning of the Binaphthyl Conformation at the Air–Water Interface. Angew. Chem. Int. Ed. 2015, 54, 8988–8991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Cheng, Z.; Kang, H.; Yu, J.; Liu, Y.; Jiang, L. A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure. Angew. Chem. Int. Ed. 2018, 57, 3701–3705. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.S.; Andrews, G.P.; Caldwell, D.L.; Lorimer, C.; Gorman, S.P.; McCoy, C.P. Novel Semi-Interpenetrating Hydrogel Networks with Enhanced Mechanical Properties and Thermoresponsive Engineered Drug Delivery, Designed as Bioactive Endotracheal Tube Biomaterials. Eur. J. Pharm. Biopharm. 2012, 82, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Chen, G.; Zhou, Z.; Li, Q. Modification of PEG-b-PCL Block Copolymer with High Melting Temperature by the Enhancement of POSS Crystal and Ordered Phase Structure. RSC Adv. 2015, 5, 33356–33363. [Google Scholar] [CrossRef]
- Ebara, M.; Kotsuchibashi, Y.; Uto, K.; Aoyagi, T.; Kim, Y.-J.; Narain, R.; Idota, N.; Hoffman, J.M. Smart Biomaterials; NIMS Monographs; Springer: Tokyo, Japan, 2014; pp. 321–336. [Google Scholar]
- Gao, C.; Tsou, C.-H.; Zeng, C.-Y.; Yuan, L.; Peng, R.; Zhang, X.-M. Organocatalyzed Ring-Opening Copolymerization of α-Bromo-γ-Butyrolactone with ε-Caprolactone for the Synthesis of Functional Aliphatic Polyesters—Pre-Polymers for Graft Copolymerization. Des. Monomers Polym. 2018, 21, 193–201. [Google Scholar] [CrossRef]
- Zako, T.; Matsushita, S.; Hoshi, T.; Aoyagi, T. Direct Surface Modification of Polycaprolactone-Based Shape Memory Materials to Introduce Positive Charge Aiming to Enhance Cell Affinity. Materials 2021, 14, 5797. [Google Scholar] [CrossRef]
- Houk, K.N.; Jabbari, A.; Hall, H.K.; Alemán, C. Why δ-Valerolactone Polymerizes and γ-Butyrolactone Does Not. J. Org. Chem. 2008, 73, 2674–2678. [Google Scholar] [CrossRef]
- Moore, T.; Adhikari, R.; Gunatillake, P. Chemosynthesis of Bioresorbable Poly(γ-Butyrolactone) by Ring-Opening Polymerisation: A Review. Biomaterials 2005, 26, 3771–3782. [Google Scholar] [CrossRef]
- Pintauer, T.; Matyjaszewski, K. Atom Transfer Radical Addition and Polymerization Reactions Catalyzed by Ppm Amounts of Copper Complexes. Chem. Soc. Rev. 2008, 37, 1087. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Dong, H.; Jakubowski, W.; Pietrasik, J.; Kusumo, A. Grafting from Surfaces for “Everyone”: ARGET ATRP in the Presence of Air. Langmuir 2007, 23, 4528–4531. [Google Scholar] [CrossRef]
- Andersen, C.; Madsen, N.J.; Daugaard, A.E. Screening Platform for Identification of Suitable Monomer Mixtures Able to Form Thin-Film Coatings on Polyurethanes by UV-Initiated Free Radical Polymerization. ACS Appl. Polym. Mater. 2019, 1, 3295–3303. [Google Scholar] [CrossRef]
- Massoumi, B.; Abdollahi, M.; Fathi, M.; Entezami, A.A.; Hamidi, S. Synthesis of Novel Thermoresponsive Micelles by Graft Copolymerization of N-Isopropylacrylamide on Poly(ε-Caprolactone-Co-α-Bromo-ε-Caprolactone) as Macroinitiator via ATRP. J. Polym. Res. 2013, 20, 47. [Google Scholar] [CrossRef]
- Ohta, K.; Iwamoto, R. Experimental Proof of the Relation Between Thickness of the Probed Surface Layer and Absorbance in FT-IR/ATR Spectroscopy. Appl. Spectrosc. 1985, 39, 418–425. [Google Scholar] [CrossRef]
- Takao, A.; Fusae, M.; Yu, N. Preparation of Cross-Linked Aliphatic Polyester and Application to Thermo-Responsive Material. J. Control. Release 1994, 32, 87–96. [Google Scholar] [CrossRef]
- Alteheld, A.; Feng, Y.; Kelch, S.; Lendlein, A. Biodegradable, Amorphous Copolyester-Urethane Networks Having Shape-Memory Properties. Angew. Chem. Int. Ed. 2005, 44, 1188–1192. [Google Scholar] [CrossRef]
- Lenoir, S.; Riva, R.; Lou, X.; Detrembleur, C.; Jérôme, R.; Lecomte, P. Ring-Opening Polymerization of α-Chloro-ε-Caprolactone and Chemical Modification of Poly(α-Chloro-ε-Caprolactone) by Atom Transfer Radical Processes. Macromolecules 2004, 37, 4055–4061. [Google Scholar] [CrossRef]
- Riva, R.; Rieger, J.; Jérôme, R.; Lecomte, P.H. Heterograft Copolymers of Poly(Ε-caprolactone) Prepared by Combination of ATRA “Grafting onto” and ATRP “Grafting from” Processes. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 6015–6024. [Google Scholar] [CrossRef]
- Li, M.; Shan, G.; Bao, Y.; Pan, P. Poly(ε-caprolactone)-Graft-poly(N-isopropylacrylamide) Amphiphilic Copolymers Prepared by a Combination of Ring-opening Polymerization and Atom Transfer Radical Polymerization: Synthesis, Self-assembly, and Thermoresponsive Property. J. Appl. Polym. Sci. 2014, 131, 22. [Google Scholar] [CrossRef]
- Defize, T.; Riva, R.; Thomassin, J.; Jérôme, C.; Alexandre, M. Thermo-Reversible Reactions for the Preparation of Smart Materials: Recyclable Covalently-Crosslinked Shape Memory Polymers. Macromol. Symp. 2011, 309–310, 154–161. [Google Scholar] [CrossRef]
- Defize, T.; Thomassin, J.-M.; Ottevaere, H.; Malherbe, C.; Eppe, G.; Jellali, R.; Alexandre, M.; Jérôme, C.; Riva, R. Photo-Cross-Linkable Coumarin-Based Poly(ε-Caprolactone) for Light-Controlled Design and Reconfiguration of Shape-Memory Polymer Networks. Macromolecules 2018, 52, 444–456. [Google Scholar] [CrossRef]
- Defize, T.; Riva, R.; Raquez, J.; Dubois, P.; Jérôme, C.; Alexandre, M. Thermoreversibly Crosslinked Poly(ε-caprolactone) as Recyclable Shape-Memory Polymer Network. Macromol. Rapid Commun. 2011, 32, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- SmidsrødJ, O.; Guillet, E. Study of Polymer-Solute Interactions by Gas Chromatography. Macromolecules 1969, 2, 272–277. [Google Scholar] [CrossRef]
- Lönnberg, H.; Fogelström, L.; Berglund, L.; Malmström, E.; Hult, A. Surface Grafting of Microfibrillated Cellulose with Poly(ε-Caprolactone)—Synthesis and Characterization. Eur. Polym. J. 2008, 44, 2991–2997. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, T.; Hoshi, T.; Aoyagi, T. Shape-Memory Property Acting as a Switch to Change the Surface Property of the Film. Appl. Sci. 2024, 14, 9619. https://doi.org/10.3390/app14219619
Yoshida T, Hoshi T, Aoyagi T. Shape-Memory Property Acting as a Switch to Change the Surface Property of the Film. Applied Sciences. 2024; 14(21):9619. https://doi.org/10.3390/app14219619
Chicago/Turabian StyleYoshida, Takumi, Toru Hoshi, and Takao Aoyagi. 2024. "Shape-Memory Property Acting as a Switch to Change the Surface Property of the Film" Applied Sciences 14, no. 21: 9619. https://doi.org/10.3390/app14219619
APA StyleYoshida, T., Hoshi, T., & Aoyagi, T. (2024). Shape-Memory Property Acting as a Switch to Change the Surface Property of the Film. Applied Sciences, 14(21), 9619. https://doi.org/10.3390/app14219619