Motor Imagery Classification Improvement of Two-Class Data with Covariance Decentering Eigenface Analysis for Brain–Computer Interface Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khademi, S.; Neghabi, M.; Farahi, M.; Shirzadi, M.; Marateb, H.R. A comprehensive review of the movement imaginary brain-computer interface methods: Challenges and future directions. In Artificial Intelligence-Based Brain-Computer Interface, Bajaj, V., Sinha, G.R., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 23–74. [Google Scholar]
- Boutros, N.N. Standard EEG: A Research Roadmap for Neuropsychiatry; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Schalk, G.; McFarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Suetens, P. Fundamentals of Medical Imaging; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Jung, U.; Ryu, J.; Choi, H. Optical Light Sources and Wavelengths within the Visible and Near-Infrared Range Using Photoacoustic Effects for Biomedical Applications. Biosensors 2022, 12, 1154. [Google Scholar] [CrossRef] [PubMed]
- Hendee, W.R.; Ritenour, E.R. Medical Imaging Physics; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Ullah, M.; Pratiwi, E.; Park, J.; Lee, K.; Choi, H.; Yeom, J. Wavelength discrimination (WLD) TOF-PET detector with DOI information. Phys. Med. Biol. 2019, 65, 055003. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Shin, S.-H. Mathematical algorithm for magnetic resonance imaging. J. Nonlinear Convex Anal. 2024, 25, 1511–1518. [Google Scholar]
- Choi, H.; Shin, S.-H. Secured computed tomography scanner using a random bit. Technol. Health Care 2023, 31, 55–59. [Google Scholar] [CrossRef]
- Jinyi, L.; Yuanqing, L.; Hongtao, W.; Tianyou, Y.; Jiahui, P.; Feng, L. A Hybrid Brain Computer Interface to Control the Direction and Speed of a Simulated or Real Wheelchair. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 720–729. [Google Scholar]
- Lemm, S.; Blankertz, B.; Curio, G.; Muller, K. Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng. 2005, 52, 1541–1548. [Google Scholar] [CrossRef]
- Schalk, G.; Mellinger, J. A Practical Guide to Brain–Computer Interfacing with BCI2000: General-Purpose Software for Brain-Computer Interface Research, Data Acquisition, Stimulus Presentation, and Brain Monitoring; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Nam, C.S.; Nijholt, A.; Lotte, F. Brain–Computer Interfaces Handbook: Technological and Theoretical Advances; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Han, Y.; Bin, H. Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives. IEEE Trans. Biomed. Eng. 2014, 61, 1425–1435. [Google Scholar] [CrossRef]
- Choi, H.; Park, J.; Lim, W.; Yang, Y.-M. Active-beacon-based driver sound separation system for autonomous vehicle applications. Appl. Acoust. 2021, 171, 107549. [Google Scholar] [CrossRef]
- Dressler, O.; Schneider, G.; Stockmanns, G.; Kochs, E.F. Awareness and the EEG power spectrum: Analysis of frequencies. Br. J. Anaesth. 2004, 93, 806–809. [Google Scholar] [CrossRef]
- Blankertz, B.; Muller, K.; Curio, G.; Vaughan, T.M.; Schalk, G.; Wolpaw, J.R.; Schlogl, A.; Neuper, C.; Pfurtscheller, G.; Hinterberger, T.; et al. The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans. Biomed. Eng. 2004, 51, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Hellström-Westas, L.; De Vries, L.S.; Rosén, I. Atlas of Amplitude-Integrated EEGs in the Newborn; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Subasi, A.; Ismail Gursoy, M. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 2010, 37, 8659–8666. [Google Scholar] [CrossRef]
- Tan, D.; Nijholt, A. Brain-Computer Interfaces and Human-Computer Interaction; Springer: New York, NJ, USA, 2010. [Google Scholar]
- Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarche, F.; Arnaldi, B. A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 2007, 4, R1. [Google Scholar] [CrossRef] [PubMed]
- Vidaurre, C.; Krämer, N.; Blankertz, B.; Schlögl, A. Time Domain Parameters as a feature for EEG-based Brain–Computer Interfaces. Neural Netw. 2009, 22, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Ari, S. P300 detection with brain–computer interface application using PCA and ensemble of weighted SVMs. IETE J. Res. 2018, 64, 406–414. [Google Scholar] [CrossRef]
- Yang, Y.-M.; Lim, W.; Kim, B. Eigenface analysis for brain signal classification: A novel algorithm. Int. J. Telemed. Clin. Pract. 2017, 2, 148–153. [Google Scholar] [CrossRef]
- Kato, K.; Takahashi, K.; Mizuguchi, N.; Ushiba, J. Online detection of amplitude modulation of motor-related EEG desynchronization using a lock-in amplifier: Comparison with a fast Fourier transform, a continuous wavelet transform, and an autoregressive algorithm. J. Neurosci. Methods 2018, 293, 289–298. [Google Scholar] [CrossRef]
- Bostanov, V. BCI competition 2003-datasets Ib and IIb: Feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Trans. Biomed. Eng. 2004, 51, 1057–1061. [Google Scholar] [CrossRef]
- Huang, N.E. Hilbert-Huang Transform and Its Applications; World Scientific: London, UK, 2014. [Google Scholar]
- Saha, S.; Mamun, K.A.; Ahmed, K.; Mostafa, R.; Naik, G.R.; Darvishi, S.; Khandoker, A.H.; Baumert, M. Progress in Brain Computer Interface: Challenges and Opportunities. Front. Syst. Neurosci. 2021, 15, 578875. [Google Scholar] [CrossRef]
- Lu, H.; Eng, H.-L.; Guan, C.; Plataniotis, K.N.; Venetsanopoulos, A.N. Regularized common spatial pattern with aggregation for EEG classification in small-sample setting. IEEE Trans. Biomed. Eng. 2010, 57, 2936–2946. [Google Scholar]
- Kachenoura, A.; Albera, L.; Senhadji, L.; Comon, P. ICA: A potential tool for BCI systems. IEEE Signal Process Mag. 2007, 25, 57–68. [Google Scholar] [CrossRef]
- Choi, H.; Park, J.; Yang, Y.-M. Whitening Technique Based on Gram-Schmidt Orthogonalization for Motor Imagery Classification of Brain-Computer Interface Applications. Sensors 2022, 22, 6042. [Google Scholar] [CrossRef] [PubMed]
- Kevric, J.; Subasi, A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system. Biomed. Signal Process. 2017, 31, 398–406. [Google Scholar] [CrossRef]
- Husain, A.M.; Sinha, S.R. Continuous EEG Monitoring: Principles and Practice; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kumar, Y.; Kumar, J.; Sheoran, P. Integration of cloud computing in BCI: A review. Biomed. Signal Process. Control 2024, 87, 105548. [Google Scholar] [CrossRef]
- Blankertz, B.; Muller, K.-R.; Krusienski, D.J.; Schalk, G.; Wolpaw, J.R.; Schlogl, A.; Pfurtscheller, G.; Millan, J.R.; Schroder, M.; Birbaumer, N. The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 153–159. [Google Scholar] [CrossRef]
- Lotte, F.; Cuntai, G. Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms. IEEE Trans. Biomed. Eng. 2011, 58, 355–362. [Google Scholar] [CrossRef]
- BCI Competition II Dataset. Available online: https://www.bbci.de/competition/ii/ (accessed on 28 October 2024).
- BCI Competition III Dataset. Available online: https://www.bbci.de/competition/iii/ (accessed on 28 October 2024).
- BCI Competition IV Dataset. Available online: https://www.bbci.de/competition/iv/ (accessed on 28 October 2024).
- Brunner, C.; Leeb, R.; Müller-Putz, G.; Schlögl, A.; Pfurtscheller, G. BCI Competition 2008—Graz Data Set A; Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology: Styria, Austria, 2008; Volume 16, pp. 1–6. [Google Scholar]
- Choi, H.; Park, J.; Yang, Y.-M. A Novel Quick-Response Eigenface Analysis Scheme for Brain-Computer Interfaces. Sensors 2022, 22, 5860. [Google Scholar] [CrossRef]
Whitening | Eigenface After Decentering | |
---|---|---|
EFA | X | X |
Ver. 1 | X | O |
Ver. 2 | ICA | X |
Ver. 3 | O | X |
Ver. 4 | ICA | O |
Ver. 5 | O | O |
Label | ||
---|---|---|
Class 1, Left Hand | Class 2, Right Hand | |
Class 1, Left Hand | A, True | B, False |
Class 2, Right Hand | C, False | D, True |
Subjects | |||||
---|---|---|---|---|---|
A1 | A2 | A3 | Average | ||
Accuracy (%) | EFA | 52.22 | 46.67 | 63.33 | 54.07 |
Ver. 1 | 55.56 | 81.67 | 68.33 | 68.52 | |
Ver. 2 | 58.62 | 49.10 | 50.00 | 52.57 | |
Ver. 3 | 57.78 | 55.00 | 61.67 | 58.15 | |
Ver. 4 | 87.36 | 90.91 | 69.64 | 82.64 | |
Ver. 5 | 100 | 98.33 | 98.33 | 98.89 |
BCI Competition III | |||||||||
Dataset IIIa | Dataset IVa | ||||||||
Sub | A1 | A2 | A3 | B1 | B2 | B3 | B4 | B5 | |
CSP | 95.56 | 61.67 | 93.33 | 66.07 | 96.43 | 47.45 | 71.88 | 49.6 | |
EFA | 53.33 | 48.33 | 63.33 | 98.21 | 78.57 | 86.94 | 62.5 | 75 | |
CDC-EFA | 100 | 98.33 | 98.33 | 90.18 | 96.43 | 94.05 | 92.86 | 100 | |
BCI Competition IV | |||||||||
Dataset IIa | |||||||||
Sub | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
CSP | 88.89 | 51.39 | 96.53 | 70.14 | 54.86 | 71.53 | 81.25 | 93.75 | 93.75 |
EFA | 52.78 | 52.78 | 54.56 | 60.42 | 57.64 | 50.69 | 54.17 | 56.94 | 53.47 |
CDC-EFA | 100 | 100 | 98.61 | 99.31 | 99.31 | 97.22 | 49.31 | 97.92 | 94.44 |
Overall | |||
---|---|---|---|
Mean | Median | Standard Deviation | |
CSP | 75.53 | 71.88 | 18.17 |
EFA | 62.33 | 56.94 | 14.08 |
CDC-EFA | 94.49 | 98.33 | 11.99 |
Accuracy | ||
---|---|---|
Subjects | EFA | CDC-EFA |
1 | 48.61 | 100 |
2 | 54.86 | 100 |
3 | 57.64 | 100 |
4 | 60.42 | 100 |
5 | 55.56 | 100 |
6 | 56.25 | 100 |
7 | 57.64 | 45.14 |
8 | 57.64 | 100 |
9 | 54.17 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Park, J.; Yang, Y.-M. Motor Imagery Classification Improvement of Two-Class Data with Covariance Decentering Eigenface Analysis for Brain–Computer Interface Systems. Appl. Sci. 2024, 14, 10062. https://doi.org/10.3390/app142110062
Choi H, Park J, Yang Y-M. Motor Imagery Classification Improvement of Two-Class Data with Covariance Decentering Eigenface Analysis for Brain–Computer Interface Systems. Applied Sciences. 2024; 14(21):10062. https://doi.org/10.3390/app142110062
Chicago/Turabian StyleChoi, Hojong, Junghun Park, and Yeon-Mo Yang. 2024. "Motor Imagery Classification Improvement of Two-Class Data with Covariance Decentering Eigenface Analysis for Brain–Computer Interface Systems" Applied Sciences 14, no. 21: 10062. https://doi.org/10.3390/app142110062
APA StyleChoi, H., Park, J., & Yang, Y.-M. (2024). Motor Imagery Classification Improvement of Two-Class Data with Covariance Decentering Eigenface Analysis for Brain–Computer Interface Systems. Applied Sciences, 14(21), 10062. https://doi.org/10.3390/app142110062