Knapsack Balancing via Multiobjectivization
Abstract
1. Introduction and Motivation
“can reduce the number of local optima, create new search paths from local optima to global optima, attain more incomparability solutions, and/or improve solution diversity”.
- We introduce knapsack balancing as a new aspect of the knapsack problem.
- We demonstrate how to incorporate the aspect of knapsack balancing into the knapsack problem standard model.
- We provide a formal proof of the correctness of our approach.
- We demonstrate working of the enriched knapsack problem model on illustrative examples.
2. Related Works
3. Balancing Knapsacks by Objective Function
- . The optimal solution to KP:
- ,
- profits of items selected to :
- ,
- (further on, we round all numbers to the third decimal place).
- ,
- profits of items selected to :
- ,
- .
- . The optimal solution to KP:
- ,
- profits of items selected to :
- ,
- .
- The optimal solution to KP:
- ,
- profits of items selected to :
- ,
- .
4. The Bi-Objective Knapsack Problem with and Objective Functions
4.1. Multiobjective Optimization
4.2. The Bi-Objective - KP
5. Illustrative Examples
- Example problems
- Pareto front approximations
- Solver
- Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
j | |||||
---|---|---|---|---|---|
0 | – | – | 19,688.000 | 185.824 | 911.322 |
1 | 0.995 | 0.005 | 19,688.000 | 185.824 | 911.322 |
33 | 0.835 | 0.165 | 19,679.000 | 192.538 | 895.297 |
133 | 0.335 | 0.665 | 19,611.000 | 197.179 | 885.795 |
153 | 0.235 | 0.765 | 19,576.000 | 200.749 | 877.454 |
165 | 0.175 | 0.825 | 19,544.000 | 204.245 | 870.672 |
181 | 0.095 | 0.905 | 19,440.000 | 206.909 | 863.358 |
186 | 0.070 | 0.930 | 19,380.000 | 207.487 | 862.964 |
187 | 0.065 | 0.935 | 19,349.000 | 207.904 | 862.007 |
189 | 0.055 | 0.945 | 19,298.000 | 211.076 | 854.957 |
197 | 0.015 | 0.985 | 18,503.000 | 214.166 | 840.841 |
198 | 0.010 | 0.990 | 18,319.000 | 217.168 | 804.718 |
199 | 0.005 | 0.995 | 18,035.000 | 220.275 | 797.057 |
200 | – | – | 12,457.000 | 231.887 | 324.431 |
j | |||||
---|---|---|---|---|---|
0 | – | – | 19,275.000 | 217.498 | 808.585 |
1 | 0.995 | 0.005 | 19,275.000 | 217.498 | 808.585 |
9 | 0.955 | 0.045 | 19,274.000 | 220.298 | 802.076 |
56 | 0.720 | 0.280 | 19,267.000 | 230.445 | 785.963 |
142 | 0.290 | 0.710 | 19,249.000 | 233.242 | 779.847 |
188 | 0.060 | 0.940 | 19,155.000 | 236.792 | 773.983 |
199 | 0.005 | 0.995 | 18,652.000 | 241.245 | 758.760 |
200 | – | – | 18,652.000 | 241.245 | 758.760 |
j | |||||
---|---|---|---|---|---|
0 | – | – | 17,955.000 | 192.966 | 854.879 |
1 | 0.995 | 0.005 | 17,955.000 | 192.966 | 854.879 |
32 | 0.840 | 0.160 | 17,945.000 | 195.628 | 847.210 |
41 | 0.795 | 0.205 | 17,942.000 | 196.714 | 846.224 |
73 | 0.635 | 0.365 | 17,927.000 | 199.264 | 838.769 |
106 | 0.470 | 0.530 | 17,903.000 | 201.056 | 837.178 |
120 | 0.400 | 0.600 | 17,888.000 | 203.606 | 829.870 |
130 | 0.350 | 0.650 | 17,876.000 | 205.891 | 824.438 |
142 | 0.290 | 0.710 | 17,858.000 | 206.750 | 823.668 |
155 | 0.225 | 0.775 | 17,819.000 | 211.088 | 814.514 |
170 | 0.150 | 0.850 | 17,756.000 | 211.247 | 814.920 |
173 | 0.135 | 0.865 | 17,732.000 | 213.909 | 808.021 |
184 | 0.080 | 0.920 | 17,600.000 | 228.255 | 591.583 |
191 | 0.045 | 0.955 | 17,574.000 | 230.579 | 588.271 |
193 | 0.035 | 0.965 | 17,557.000 | 234.877 | 583.480 |
195 | 0.025 | 0.975 | 17,517.000 | 242.248 | 575.717 |
200 | – | – | 16,137.000 | 246.343 | 511.088 |
References
- Kellerer, H.; Pferschy, U.; Pisinger, D. Knapsack Problems; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Martello, S.; Toth, P. Knapsack Problems: Algorithms and Computer Implementations; John Wiley and Sons: New York, NY, USA, 1990. [Google Scholar]
- Assi, M.; Haraty, R. A survey of the knapsack problem. In Proceedings of the 2018 International Arab Conference on Information Technology (ACIT), Werdanye, Lebanon, 28–30 November 2018; pp. 1–6. [Google Scholar]
- Camargo, V.; Mattiolli, L.; Toledo, F. A knapsack problem as a tool to solve the production planning problem in small foundries. Comput. Oper. Res. 2012, 39, 86–92. [Google Scholar] [CrossRef]
- Mavrotas, G.; Diakoulaki, D.; Kourentzis, A. Selection among ranked projects under segmentation, policy and logical constraints. Eur. J. Oper. Res. 2008, 187, 177–192. [Google Scholar] [CrossRef]
- Olivier, P.; Lodi, A.; Pesant, G. The quadratic multiknapsack problem with conflicts and balance constraints. INFORMS J. Comput. 2021, 33, 949–962. [Google Scholar] [CrossRef]
- Nash, J. Two-person cooperative games. Econometrica 1953, 21, 128–140. [Google Scholar] [CrossRef]
- Knowles, J.; Watson, R.; Corne, D. Reducing local optima in single-objective problems by multi-objectivization. In Evolutionary Multi-Criterion Optimization; Springer: Berlin/Heidelberg, Germany, 2001; pp. 269–283. [Google Scholar]
- Ma, X.; Huang, Z.; Li, X.; Qi, Y.; Wang, L.; Zhu, Z. Multiobjectivization of single-objective optimization in evolutionary computation: A survey. IEEE Trans. Cybern. 2023, 53, 3702–3715. [Google Scholar] [CrossRef]
- Klamroth, K.; Tind, J. Constrained optimization using multiple objective programming. J. Glob. Optim. 2007, 37, 325–355. [Google Scholar] [CrossRef]
- Bednarczuk, E.; Miroforidis, J.; Pyzel, P. A multi-criteria approach to approximate solution of multiple-choice knapsack problem. Comput. Optim. Appl. 2018, 70, 889–910. [Google Scholar] [CrossRef]
- Bednarczuk, E.; Kaliszewski, I.; Miroforidis, J. Approximate solutions to the multiple-choice knapsack problem by multiobjectivization and Chebyshev scalarization. Oper. Res. Decis. 2024; in press. [Google Scholar]
- Cacchiani, V.; Iori, M.; Locatelli, A.; Martello, S. Knapsack problems—An overview of recent advances. Part I: Single knapsack problems. Comput. Oper. Res. 2022, 143, 105692. [Google Scholar] [CrossRef]
- Cacchiani, V.; Iori, M.; Locatelli, A.; Martello, S. Knapsack problems—An overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems. Comput. Oper. Res. 2022, 143, 105693. [Google Scholar] [CrossRef]
- D’Ambrosio, C.; Furini, F.; Monaci, M.; Traversi, E. On the product knapsack problem. Optim. Lett. 2018, 12, 691–712. [Google Scholar] [CrossRef]
- Halman, N.; Kovalyov, M.; Quilliot, A.; Shabtay, D.; Zofi, M. Bi-criteria path problem with minimum length and maximum survival probability. OR Spectr. 2019, 41, 469–489. [Google Scholar] [CrossRef]
- Pferschy, U.; Schauer, J.; Thielen, C. Approximating the product knapsack problem. Optim. Lett. 2021, 15, 2529–2540. [Google Scholar] [CrossRef]
- Boeckmann, J.; Thielen, C.; Pferschy, U. Approximating single- and multi-objective nonlinear sum and product knapsack problems. Discret. Optim. 2023, 48, 100771. [Google Scholar] [CrossRef]
- Simonson, I. Choice based on reasons: The case of attraction and compromise effects. J. Consum. Res. 1989, 16, 158–174. [Google Scholar] [CrossRef]
- Simonson, I.; Tversky, A. Choice in context: Tradeoff contrast and extremeness aversion. J. Mark. Res. 1992, 29, 281–295. [Google Scholar] [CrossRef]
- Chernev, A. Context effects without a context: Attribute balance as a reason for choice. J. Consum. Res. 2004, 32, 213–223. [Google Scholar] [CrossRef]
- Chernev, A. Extremeness aversion and attribute-balance effects in choice. J. Consum. Res. 2004, 31, 249–263. [Google Scholar] [CrossRef]
- Jacques, I. Mathematics for Economics and Business, 9th ed.; Pearson Education: Harlow, UK, 2018. [Google Scholar]
- Ehrgott, M. Multicriteria Optimization; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Kaliszewski, I. Soft Computing for Complex Multiple Criteria Decision Making; Springer: New York, NY, USA, 2006. [Google Scholar]
- Kaliszewski, I.; Miroforidis, J.; Podkopaev, D. Multiple Criteria Decision Making by Multiobjective Optimization—A Toolbox; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Miettinen, K.M. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: New York, NY, USA, 1999. [Google Scholar]
- GUROBI. 2024. Available online: https://www.gurobi.com/solutions/gurobi-optimizer/ (accessed on 31 September 2024).
- Helfrich, S.; Perini, T.; Halffmann, P.; Halffmann, P.; Bol, N.; Ruzika, S. Analysis of the weighted Tchebycheff weight set decomposition for multiobjective discrete optimization problems. J. Glob. Optim. 2023, 86, 417–440. [Google Scholar] [CrossRef]
- Kabadurmus, O.; Tasgetiren, M.F.; Oztop, H.; Erdogan, M.S. Solving 0-1 bi-objective multi-dimensional knapsack problems using binary genetic algorithm. Heuristics Optim. Learn. Stud. Comput. Intell. 2021, 906, 51–67. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Zuo, M.; Gong, D.; Wang, Y.; Ye, X.; Zeng, B.; Meng, F. Process knowledge-guided autonomous evolutionary optimization for constrained multiobjective problems. IEEE Trans. Evol. Comput. 2023, 28, 193–207. [Google Scholar] [CrossRef]
100 | 220 | 90 | 400 | 300 | 400 | 205 | 120 | 160 | 580 | |
8 | 24 | 13 | 80 | 70 | 80 | 45 | 15 | 28 | 90 | |
400 | 140 | 100 | 1300 | 650 | 320 | 480 | 80 | 60 | 2550 | |
130 | 32 | 20 | 120 | 40 | 30 | 20 | 6 | 3 | 180 |
j | |||||
---|---|---|---|---|---|
0 | – | – | 17,038.000 | 185.209 | 859.335 |
1 | 0.995 | 0.005 | 17,038.000 | 185.209 | 859.335 |
47 | 0.765 | 0.235 | 17,021.000 | 205.085 | 816.100 |
180 | 0.100 | 0.900 | 16,731.000 | 207.331 | 809.829 |
184 | 0.080 | 0.920 | 16,660.000 | 208.565 | 806.430 |
187 | 0.065 | 0.935 | 16,609.000 | 212.045 | 799.082 |
192 | 0.040 | 0.960 | 16,430.000 | 212.977 | 607.430 |
193 | 0.035 | 0.965 | 16,348.000 | 222.843 | 585.288 |
196 | 0.020 | 0.980 | 16,262.000 | 225.963 | 581.562 |
197 | 0.015 | 0.985 | 16,257.000 | 226.393 | 581.394 |
198 | 0.010 | 0.990 | 16,049.000 | 230.010 | 574.887 |
199 | 0.005 | 0.995 | 15,892.000 | 237.173 | 519.866 |
200 | – | – | 15,841.000 | 240.652 | 516.462 |
j | |||||
---|---|---|---|---|---|
0 | – | – | 17,675.000 | 215.930 | 798.377 |
1 | 0.995 | 0.005 | 17,675.000 | 215.930 | 798.377 |
177 | 0.115 | 0.885 | 17,502.000 | 218.669 | 792.286 |
183 | 0.085 | 0.915 | 17,459.000 | 219.873 | 789.987 |
186 | 0.070 | 0.930 | 17,425.000 | 223.403 | 783.121 |
198 | 0.010 | 0.990 | 16,615.000 | 228.355 | 745.153 |
199 | 0.005 | 0.995 | 15,885.000 | 229.126 | 575.893 |
200 | – | – | 15,012.000 | 239.317 | 503.237 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaliszewski, I.; Miroforidis, J. Knapsack Balancing via Multiobjectivization. Appl. Sci. 2024, 14, 9236. https://doi.org/10.3390/app14209236
Kaliszewski I, Miroforidis J. Knapsack Balancing via Multiobjectivization. Applied Sciences. 2024; 14(20):9236. https://doi.org/10.3390/app14209236
Chicago/Turabian StyleKaliszewski, Ignacy, and Janusz Miroforidis. 2024. "Knapsack Balancing via Multiobjectivization" Applied Sciences 14, no. 20: 9236. https://doi.org/10.3390/app14209236
APA StyleKaliszewski, I., & Miroforidis, J. (2024). Knapsack Balancing via Multiobjectivization. Applied Sciences, 14(20), 9236. https://doi.org/10.3390/app14209236