Photobiomodulation Effect of Different Diode Wavelengths on the Proliferation of Human Buccal Fat Pad Mesenchymal Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Groups and Irradiation Protocol
2.3. MTT Assay
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heitz-Mayfield, L.J.; Trombelli, L.; Heitz, F.; Needleman, I.; Moles, D. A systematic review of the effect of surgical debridement vs non-surgical debridement for the treatment of chronic periodontitis. J. Clin. Periodontol. 2002, 29 (Suppl. 3), 92–102. [Google Scholar] [CrossRef] [PubMed]
- Armitage, G.C. Clinical evaluation of periodontal diseases. Periodontology 2000 1995, 7, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Armitage, G.C. Periodontal diagnoses and classification of periodontal diseases. Periodontology 2000 2004, 34, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J.K.; Wulur, I.; Alfonso, Z.; Hedrick, M.H. Fat tissue: An underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006, 24, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Strem, B.M.; Hicok, K.C.; Zhu, M.; Wulur, I.; Alfonso, Z.; Schreiber, R.E.; Fraser, J.K.; Hedrick, M.H. Multipotential differentiation of adipose tissue-derived stem cells. Keio J. Med. 2005, 54, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Baer, P.C.; Geiger, H. Adipose-derived mesenchymal stromal/stem cells: Tissue localization, characterization, and heterogeneity. Stem Cells Int. 2012, 2012, 11. [Google Scholar] [CrossRef] [PubMed]
- Farré-Guasch, E.; Marti-Page, C.; Hernadez-Alfaro, F.; Klein-Nulend, J.; Casals, N. Buccal fat pad, an oral access source of human adipose stem cells with potential for osteochondral tissue engineering: An in vitro study. Tissue Eng. Part C Methods 2010, 16, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, A.; Sadeghi, N. Application of buccal fat pad-derived stem cells in combination with autogenous iliac bone graft in the treatment of maxillomandibular atrophy: A preliminary human study. Int. J. Oral Maxillofac. Surg. 2016, 47, 864–871. [Google Scholar] [CrossRef]
- Negi, S.; Krishnamurthy, M.; Ganji, K.K.; Pendor, S. Modulatory effects by neodymium-doped yttrium aluminum garnet laser on fibroblast attachment to single rooted tooth surfaces following ultrasonic scaling and root planning: An in vitro study. J. Indian Soc. Periodontol. 2015, 19, 25–31. [Google Scholar]
- Mester, E.; Gyenes, G.; Tota, J. Experimentelle Untersuchungen über die Wirkung von Laserstrahlen auf die Wundheilung. Z. Exper Chir. 1969, 2, 94–101. [Google Scholar]
- Fernando, S.; Hill, C.M.; Walker, R. A randomised double blind comparative study of low level laser therapy following surgical extraction of lower third molar teeth. Br. J. Oral Maxillofac. Surg. 1993, 31, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, Y.; Shimizu, N.; Kariya, G.; Abiko, Y. Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 1998, 22, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Abramovitch-Gottlib, L.; Gross, T.; Naveh, D.; Geresh, S.; Rosenwaks, S.; Bar, I.; Vago, R. Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med. Sci. 2005, 20, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Khadra, M.; Rønold, H.J.; Lyngstadaas, S.P.; Ellingsen, J.E.; Haanæs, H.R. Low-level laser therapy stimulates bone–implant interaction: An experimental study in rabbits. Clin. Oral Implant. Res. 2004, 15, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Qadri, T.; Miranda, L.; Tuner, J.; Gustafsson, A. The short-term effects of low-level lasers as adjunct therapy in the treatment of periodontal inflammation. J. Clin. Periodontol. 2005, 32, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Aykol, G.; Baser, U.; Maden, I.; Kazak, Z.; Onan, U.; Tanrikulu-Kucuk, S.; Ademoglu, E.; Issever, H.; Yalcin, F. The effect of low-level laser therapy as an adjunct to non-surgical periodontal treatment. J. Periodontol. 2011, 82, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Makhlouf, M.; Dahaba, M.M.; Tuner, J.; Eissa, S.A.; Harhash, T.A. Effect of adjunctive low level laser therapy (LLLT) on nonsurgical treatment of chronic periodontitis. Photomed. Laser Surg. 2012, 30, 160–166. [Google Scholar] [CrossRef]
- Damante, C.A.; Greghi, S.L.; Sant’ana, A.C.; Passanezi, E. Clinical evaluation of the effects of low-intensity laser (GaAlAs) on wound healing after gingivoplasty in humans. J. Appl. Oral Sci. Rev. FOB 2004, 12, 133–136. [Google Scholar] [CrossRef]
- Damante, C.A.; Greghi, S.L.; Sant’Ana, A.C.; Passanezi, E.; Taga, R. Histomorphometric study of the healing of human oral mucosa after gingivoplasty and low-level laser therapy. Lasers Surg. Med. 2004, 35, 377–384. [Google Scholar] [CrossRef]
- Amorim, J.C.; de Sousa, G.R.; de Barros Silveira, L.; Prates, R.A.; Pinotti, M.; Ribeiro, M.S. Clinical study of the gingiva healing after gingivectomy and low-level laser therapy. Photomed. Laser Surg. 2006, 24, 588–594. [Google Scholar] [CrossRef]
- Ozcelik, O.; Cenk Haytac, M.; Kunin, A.; Seydaoglu, G. Improved wound healing by low-level laser irradiation after gingivectomy operations: A controlled clinical pilot study. J. Clin. Periodontol. 2008, 35, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, O.; Cenk Haytac, M.; Seydaoglu, G. Enamel matrix derivative and low-level laser therapy in the treatment of intra-bony defects: A randomized placebo-controlled clinical trial. J. Clin. Periodontol. 2008, 35, 147–156. [Google Scholar] [CrossRef]
- Anders, J.J.; Lanzafame, R.J.; Arany, P.R. Low-level light/laser therapy versus photobiomodulation therapy. Photomed. Laser Surg. 2015, 33, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Mirhashemi, A.; Rasouli, S.; Shahi, S.; Chiniforush, N. Efficacy of Photobiomodulation Therapy for Orthodontic Pain Control Following the Placement of Elastomeric Separators: A Randomized Clinical Trial. J. Lasers Med. Sci. 2021, 22, e8. [Google Scholar] [CrossRef] [PubMed]
- Etemadi, A.; Sadatmansouri, S.; Sodeif, F.; Jalalishirazi, F.; Chiniforush, N. Photobiomodulation Effect of Different Diode Wavelengths on the Proliferation of Human Gingival Fibroblast Cells. Photochem. Photobiol. 2021, 97, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.; Cronshaw, M.; Grootveld, M. Photobiomodulation Delivery Parameters in Dentistry: An Evidence-Based Approach. Photobiomodul Photomed Laser Surg. 2022, 40, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Mylona, V.; Anagnostaki, E.; Chiniforush, N.; Barikani, H.; Lynch, E.; Grootveld, M. Photobiomodulation effects on periodontal ligament stem cells: A systematic review of in-vitro studies. Curr. Stem Cell Res. Ther. 2024, 19, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Pandeshwar, P.; Roa, M.D.; Das, R.; Shastry, S.P.; Kaul, R.; Srinivasreddy, M.B. Photobiomodulation in oral medicine: A review. J. Investig. Clin. Dent. 2016, 7, 114–126. [Google Scholar] [CrossRef]
- Marques, N.P.; Lopes, C.S.; Marques, N.C.T.; Cosme-Silva, L.; Oliveira, T.M.; Duque, C.; Sakai, V.T.; Hanemann, J.A.C. A preliminary comparison between the effects of red and infrared laser irradiation on viability and proliferation of SHED. Lasers Med. Sci. 2018, 34, 465–471. [Google Scholar] [CrossRef]
- Fekrazad, R.; Asefi, S.; Eslaminejad, M.B.; Taghiar, L.; Bordbar, S.; Hamblin, M.R. Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: Proliferation and differentiation to bone or cartilage. Lasers Med. Sci. 2019, 34, 115–126. [Google Scholar] [CrossRef]
- van Meerloo, J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [PubMed]
- Hynes, K.; Menicanin, D.; Gronthos, S.; Bartold, P.M. Clinical utility of stem cells for periodontal regeneration. Periodontology 2000 2012, 59, 203–227. [Google Scholar] [CrossRef] [PubMed]
- Ginani, F.; Soares, D.M.; Barreto, M.P.; Barboza, C.A. Effect of low-level laser therapy on mesenchymal stem cell proliferation: A systematic review. Lasers Med. Sci. 2015, 30, 2189–2194. [Google Scholar] [CrossRef]
- Soares, D.M.; Ginani, F.; Henriques, A.G.; Barboza, C.A. Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med. Sci. 2015, 30, 1171–1174. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Y.; Chen, A.C.H.; Carroll, J.D.; Hamblin, M.R. Biphasic dose response in low level light therapy. Dose Response 2009, 7, 358–383. [Google Scholar] [CrossRef] [PubMed]
- Tunér, J.H.L. The Laser Therapy Handbook; Prima Books AB: Grangesberg, Sweden, 2007. [Google Scholar]
- Romanovsky, A.A.; Almeida, M.C.; Garami, A.; Steiner, A.A.; Norman, M.H.; Morrison, S.F.; Nakamura, K.; Burmeister, J.J.; Nucci, T.B. The transient receptor potential vanilloid-1 channel in thermoregulation: A thermosensor it is not. Pharmacol. Rev. 2009, 61, 228–261. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Y.-Y.; Wang, Y.; Lyu, P.; Hamblin, M.R. Photobiomodulation of human adipose-derived stem cells using 810 nm and 980 nm lasers operates via different mechanisms of action. Biochim. Biophys. Acta 2017, 1861, 441–449. [Google Scholar] [CrossRef]
- Gholami, L.; Afshar, S.; Mahmoudi, R.; Arkian, A.A.; Parsamanesh, G.; Rad, M.R.; Baghaei, K. Evaluation of the Effect of Near Infra-red Photobiomodulation on Buccal Fat Pad-Derived Stem Cells. Int. J. Dent. Oral Sci. 2020, 7, 1164–1171. [Google Scholar]
- Gholami, L.; Parsamanesh, G.; Shahabi, S.; Jazaeri, M.; Baghaei, K.; Fekrazad, R. The Effect of Laser Photobiomodulation on Periodontal Ligament Stem Cells. Photochem. Photobiol. 2020, 97, 851–859. [Google Scholar] [CrossRef]
- Fekrazad, R.; Sadeghi Ghuchani, M.; Eslaminejad, M.B.; Taghiyar, L.; Kalhori, K.A.; Pedram, M.S.; Shayan, A.; Aghdami, N.; Abrahamse, H. The effects of combined low level laser therapy and mesenchymal stem cells on bone regeneration in rabbit calvarial defects. J. Photochem. Photobiol. B 2015, 151, 180–185. [Google Scholar] [CrossRef]
- Zaccara, I.M.; Ginani, F.; Mota-Filho, H.G.; Henriques, Á.C.; Barboza, C.A. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med. Sci. 2015, 30, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.O.; Longo, J.P.F.; Azevedo, R.B. Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch. Oral Biol. 2012, 57, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
Groups | Wavelength (nm) | Power (mW) | Power Density (mW/cm2) | Energy Density (J/cm2) |
---|---|---|---|---|
1 | 635 | 220 | 0.33 | 1, 1.5, 2.5 and 4 |
2 | 660 | 150 | 0.25 | |
3 | 808 | 250 | 0.4 | |
4 | 980 | 100 | 0.25 |
Energy Density | 1 J/cm2 | 1.5 J/cm2 | 2.5 J/cm2 | 4 J/cm2 |
---|---|---|---|---|
Wavelength | ||||
control | 100 | 100 | 100 | 100 |
635 nm | 81.6018 | 105.898 | 95.8477 | 98.8391 |
660 nm | 100.561 | 105.862 | 100.796 | 100.602 |
808 nm * | 102.007 | 109.765027 | 119.181 | 117.269 |
980 nm | 103.347 | 97.3933 | 93.1032 | 101.313 |
Energy Density | 1 J/cm2 | 1.5 J/cm2 | 2.5 J/cm2 | 4 J/cm2 |
---|---|---|---|---|
Wavelength | ||||
control | 100 | 100 | 100 | 100 |
635 nm | 105.28 | 107.26 | 111.52 | 109.38 |
660 nm | 112.45 | 107.59 | 104.01 | 111.24 |
808 nm * | 109 | 123.42553 | 134.52 | 125.39 |
980 nm | 97.459 | 102.86 | 103.94 | 110.23 |
Energy Density | 1 J/cm2 | 1.5 J/cm2 | 2.5 J/cm2 | 4 J/cm2 |
---|---|---|---|---|
wavelength | ||||
control | 101.11 | 101.11 | 101.11 | 101.11 |
635 nm | 98.706 | 116.94 | 105.71 | 124.08 |
660 nm | 114.48 | 118.43 | 112.64 | 113.84 |
808 nm | 131.37 * | 145.55961 * | 145.84 * | 129.9 |
980 nm * | 99.442 | 98.755 | 104.1 | 115.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etemadi, A.; Khajehmougahi, K.; Solimei, L.; Benedicenti, S.; Chiniforush, N. Photobiomodulation Effect of Different Diode Wavelengths on the Proliferation of Human Buccal Fat Pad Mesenchymal Cells. Appl. Sci. 2024, 14, 847. https://doi.org/10.3390/app14020847
Etemadi A, Khajehmougahi K, Solimei L, Benedicenti S, Chiniforush N. Photobiomodulation Effect of Different Diode Wavelengths on the Proliferation of Human Buccal Fat Pad Mesenchymal Cells. Applied Sciences. 2024; 14(2):847. https://doi.org/10.3390/app14020847
Chicago/Turabian StyleEtemadi, Ardavan, Koosha Khajehmougahi, Luca Solimei, Stefano Benedicenti, and Nasim Chiniforush. 2024. "Photobiomodulation Effect of Different Diode Wavelengths on the Proliferation of Human Buccal Fat Pad Mesenchymal Cells" Applied Sciences 14, no. 2: 847. https://doi.org/10.3390/app14020847
APA StyleEtemadi, A., Khajehmougahi, K., Solimei, L., Benedicenti, S., & Chiniforush, N. (2024). Photobiomodulation Effect of Different Diode Wavelengths on the Proliferation of Human Buccal Fat Pad Mesenchymal Cells. Applied Sciences, 14(2), 847. https://doi.org/10.3390/app14020847