Identification of Electrocardiographic Patterns Related to Mortality with COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Signal Pre-Processing and Feature Extraction
2.3. Advanced Repeated Structuring and Learning Procedure
2.4. Deep Learning Interpretability Module
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 26 October 2023).
- Habas, K.; Nganwuchu, C.; Shahzad, F.; Gopalan, R.; Haque, M.; Rahman, S.; Majumder, A.A.; Nasim, T. Resolution of coronavirus disease 2019 (COVID-19). Expert Rev. Anti Infect. Ther. 2020, 18, 1201–1211. [Google Scholar] [CrossRef]
- Mohamadian, M.; Chiti, H.; Shoghli, A.; Biglari, S.; Parsamanesh, N.; Esmaeilzadeh, A. COVID-19: Virology, biology and novel laboratory diagnosis. J. Gene Med. 2021, 23, e3303. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, S.; Qin, M.; Jiang, W.; Liu, X. Prevalence of Cardiovascular Comorbidities in Coronavirus Disease 2019, Severe Acute Respiratory Syndrome, and Middle East Respiratory Syndrome: Pooled Analysis of Published Data. J. Am. Heart Assoc. 2020, 9, e016812. [Google Scholar] [CrossRef]
- Müller-Wieland, D.; Marx, N.; Dreher, M.; Fritzen, K.; Schnell, O. COVID-19 and Cardiovascular Comorbidities. Exp. Clin. Endocrinol. Diabetes 2022, 130, 178–189. [Google Scholar] [CrossRef]
- Koeppen, M.; Rosenberger, P.; Magunia, H. COVID-19 Related Cardiovascular Comorbidities and Complications in Critically Ill Patients: A Systematic Review and Meta-analysis. Clin. Med. Insights Circ. Respir. Pulm. Med. 2021, 15, 1–11. [Google Scholar] [CrossRef]
- Parwani, A.S.; Haug, M.; Keller, T.; Guthof, T.; Blaschke, F.; Tscholl, V.; Biewener, S.; Kamieniarz, P.; Zieckler, D.; Kruse, J.; et al. Cardiac arrhythmias in patients with COVID-19: Lessons from 2300 telemetric monitoring days on the intensive care unit. J. Electrocardiol. 2021, 66, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Han, K.Y.; Qiao, Q.; Zhu, Y.Q.; Chen, X.G.; Kang, X.X.; Zhang, G.F.; Cai, X.C.; Du, Y.; Jin, J.; Di, R.M.; et al. Atrial Arrhythmias in Patients with Severe COVID-19. Cardiol. Res. Pract. 2021, 2021, 8874450. [Google Scholar] [CrossRef]
- Sit, O.; Oksen, D.; Atici, A.; Barman, H.A.; Alici, G.; Pala, A.S.; Tekin, E.A.; Meke, A.; Borahan, S.; Gungor, B. Prognostic significance of Tp-e interval and Tp-e/QTc ratio in patients with COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 3272–3278. [Google Scholar] [CrossRef]
- Yildirim, A.; Karaca, I.O.; Yilmaz, F.K.; Gunes, H.M.; Cakal, B. Fragmented QRS on surface electrocardiography as a predictor of cardiac mortality in patients with SARS-CoV-2 infection. J. Electrocardiol. 2021, 66, 108–112. [Google Scholar] [CrossRef]
- Vedovati, M.C.; Giustozzi, M.; Conti, S.; Becattini, C. Shock and Diffuse ST-elevation in a Patient with Coronavirus Disease-2019 Disease. J. Cardiovasc. Echogr. 2020, 30, 223–226. [Google Scholar] [CrossRef]
- Garcia-Zamora, S.; Lee, S.; Haseeb, S.; Bazoukis, G.; Tse, G.; Alvarez-Garcia, J.; Gul, E.E.; Çinier, G.; Alexander, B.; Martins Pinto-Filho, M.; et al. Arrhythmias and electrocardiographic findings in Coronavirus disease 2019: A systematic review and meta-analysis. Pacing Clin. Electrophysiol. 2021, 44, 1062–1074. [Google Scholar] [CrossRef]
- Yang, D.; Li, J.; Gao, P.; Chen, T.; Cheng, Z.; Cheng, K.; Deng, H.; Fang, Q.; Yi, C.; Fan, H.; et al. The prognostic significance of electrocardiography findings in patients with coronavirus disease 2019: A retrospective study. Clin. Cardiol. 2021, 44, 963–970. [Google Scholar] [CrossRef]
- Schijvenaars, B.J.A.; van Herpen, G.; Kors, J.A. Intraindividual variability in electrocardiograms. J. Electrocardiol. 2008, 41, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Kung, B.H.; Hu, P.Y.; Huang, C.C.; Lee, C.C.; Yao, C.Y.; Kuan, C.H. An Efficient ECG Classification System using Resource-Saving Architecture and Random Forest. IEEE J. Biomed. Health Inf. 2020, 25, 1904–1914. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qiao, X.; Liu, C.; Wang, X.; Liu, Y.; Yao, L.; Zhang, H. Automated ECG classification using a non-local convolutional block attention module. Comput. Methods Programs Biomed. 2021, 203, 106006. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, M.A.; Ozdemir, G.D.; Guren, O. Classification of COVID-19 electrocardiograms by using hexaxial feature mapping and deep learning. BMC Med. Inform. Decis. Mak. 2021, 21, 170. [Google Scholar] [CrossRef]
- Gomes, J.C.; de Santana, M.A.; Masood, A.I.; de Lima, C.L.; Dos Santos, W.P. COVID-19’s influence on cardiac function: A machine learning perspective on ECG analysis. Med. Biol. Eng. Comput. 2023, 61, 1057–1081. [Google Scholar] [CrossRef]
- Nawaz, M.; Nazir, T.; Javed, A.; Malik, K.M.; Saudagar, A.K.J.; Khan, M.B.; Abul Hasanat, M.H.; Al Tameem, A.; Al Khathami, M. Efficient-ECGNet framework for COVID-19 classification and correlation prediction with the cardio disease through electrocardiogram medical imaging. Front. Med. 2022, 9, 1005920. [Google Scholar] [CrossRef]
- Sridhar, A.R.; Chen Amber, Z.H.; Mayfield, J.J.; Fohner, A.E.; Arvanitis, P.; Atkinson, S.; Braunschweig, F.; Chatterjee, N.A.; Zamponi, A.F.; Johnson, G.; et al. Identifying risk of adverse outcomes in COVID-19 patients via artificial intelligence-powered analysis of 12-lead intake electrocardiogram. Cardiovasc. Digit. Health J. 2022, 3, 62–74. [Google Scholar] [CrossRef]
- Muscato, F.M.; Corino, V.D.A.; Rivolta, M.W.; Cerveri, P.; Sanzo, A.; Vicentini, A.; Sassi, R.; Mainardi, L. A CNN for COVID-19 Detection using ECG signals. In Proceedings of the 49th Computing in Cardiology Conference, Tampere, Finland, 4–7 September 2022. [Google Scholar] [CrossRef]
- Baek, Y.S.; Jo, Y.; Lee, S.C.; Choi, W.; Kim, D.H. Artificial intelligence-enhanced electrocardiography for early assessment of coronavirus disease 2019 severity. Sci. Rep. 2023, 13, 15187. [Google Scholar] [CrossRef]
- Sbrollini, A.; De Jongh, M.C.; Ter Haar, C.C.; Treskes, R.W.; Man, S.; Burattini, L.; Swenne, C.A. Serial electrocardiography to detect newly emerging or aggravating cardiac pathology: A deep-learning approach. Biomed. Eng. Online 2019, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Marinucci, D.; Sbrollini, A.; Marcantoni, I.; Morettini, M.; Swenne, C.A.; Burattini, L. Artificial Neural Network for Atrial Fibrillation Identification in Portable Devices. Sensors 2020, 20, 3570. [Google Scholar] [CrossRef]
- Sbrollini, A.; Ter Haar, C.C.; Leoni, C.; Morettini, M.; Burattini, L.; Swenne, C.A. Advanced repeated structuring and learning procedure to detect acute myocardial ischemia in serial 12-lead ECGs. Physiol. Meas. 2023, 24, 44. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Man, S.; Maan, A.C.; Schalij, M.J.; Swenne, C.A. Vectorcardiographic diagnostic & prognostic information derived from the 12-lead electrocardiogram: Historical review and clinical perspective. J. Electrocardiol. 2015, 48, 463–475. [Google Scholar] [CrossRef]
- Nelwan, S.P.; Kors, J.A.; Meij, S.H. Minimal lead sets for reconstruction of 12-lead electrocardiograms. J. Electrocardiol. 2000, 33, 163–166. [Google Scholar] [CrossRef]
- Kors, J.A.; Van Herpern, G.; Sitting, A.C.; Van Bemmel, J.H. Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: Diagnostic comparison of different methods. Eur. Heart J. 1990, 11, 1083–1092. [Google Scholar] [CrossRef]
- Sbrollini, A.; Sedova, K.; Van Dam, P.; Kautzner, J.; Morettini, M.; Burattini, L. Point2ecg: An interactive software application for the identification of electrocardiographic fiducial points. In Proceedings of the International Union for Physical and Engineering Sciences in Medicine, Singapore, 12–17 June 2022. [Google Scholar]
- Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Prechelt, L. Early stopping—But when. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2012; Volume 7700, pp. 53–67. [Google Scholar] [CrossRef]
- King, G.; Zeng, L. Logistic Regression in Rare Events Data. Polit. Anal. 2001, 9, 137–163. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. Cross-Validation. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; pp. 241–249. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. arXiv 2016, arXiv:1602.04938. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. Model-Agnostic Interpretability of Machine Learning. arXiv 2016, arXiv:1606.05386. [Google Scholar] [CrossRef]
- Doshi-Velez, F.; Kim, B. Towards A Rigorous Science of Interpretable Machine Learning. arXiv 2017, arXiv:1702.08608. [Google Scholar] [CrossRef]
- Santoro, F.; Monitillo, F.; Raimondo, P.; Lopizzo, A.; Brindicci, G.; Gilio, M.; Musaico, F.; Mazzola, M.; Vestito, D.; Di Benedetto, R.; et al. Qtc interval prolongation and life-threatening arrhythmias during hospitalization in patients with COVID-19. Results from a multi-center prospective registry. Clin. Infect. Dis. 2020, 73, e4031–e4038. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Wang, J.; He, X.; Huang, F.; Chen, J.; Yang, X. Electrocardiogram analysis of patients with different types of COVID-19. Ann. Noninvasive Electrocardiol. 2020, 25, 12806. [Google Scholar] [CrossRef]
- Angeli, F.; Spanevello, A.; De Ponti, R.; Visca, D.; Marazzato, J.; Palmiotto, G.; Feci, D.; Reboldi, G.; Fabbri, L.M.; Verdecchia, P. Electrocardiographic features of patients with COVID-19 pneumonia. Eur. J. Intern. Med. 2020, 78, 101–106. [Google Scholar] [CrossRef]
- Kassis, N.; Kumar, A.; Gangidi, S.; Milinovich, A.; Kalra, A.; Bhargava, A.; Menon, V.; Wazni, O.M.; Rickard, J.; Khot, U.N. Prognostic value of initial electrocardiography in predicting long-term all-cause mortality in COVID-19. J. Electrocardiol. 2022, 75, 1–9. [Google Scholar] [CrossRef]
- Pavri, B.B.; Kloo, J.; Farzad, D.; Riley, J.M. Behavior of the pr interval with increasing heart rate in patients with COVID-19. Heart Rhythm 2020, 17, 1434–1438. [Google Scholar] [CrossRef]
- Rezuş, C.; Moga, V.D.; Ouatu, A.; Floria, M. QT interval variations and mortality risk: Is. there any relationship? Anatol. J. Cardiol. 2015, 15, 255–258. [Google Scholar] [CrossRef]
- Klabunde, R.E. Cardiovascular Physiology Concepts, 2nd ed.; Lippincott, Williams & Wilkins/Wolters Kluwer: Philadephia, PA, USA, 2011. [Google Scholar]
- Khan, A.H.; Hussain, M.; Malik, M.K. ECG Images dataset of Cardiac and COVID-19 Patients. Data Brief 2021, 34, 106762. [Google Scholar] [CrossRef]
Feature ID | Feature Name | Feature Description |
---|---|---|
f1–f12 | PA (μV) | P-wave peak amplitude |
f13–f24 | QA (μV) | Q-wave amplitude at QRS-complex onset position |
f25–f36 | QRSA (μV) | QRS-complex amplitude at R-wave peak position |
f37–f48 | SA (μV) | J-point amplitude |
f49–f60 | TA (μV) | T-wave peak amplitude |
f61–f72 | QRS/P (adi) | Ratio between the QRSA and PA |
f73–f84 | QRS/T (adi) | Ratio between the QRSA and TA |
f85–f96 | ToTpS (°) | Angle between the baseline and the left front of the T wave |
f97–f108 | TpTeS (°) | Angle between the baseline and the right front of the T wave |
f109–f120 | PR (ms) | Time interval between P-wave peak and R-wave peak |
f121–f132 | PS (ms) | Time interval between P-wave peak and J point |
f133–f144 | PT (ms) | Time interval between P-wave peak and T-wave end |
f145–f156 | QT (ms) | Time interval between QRS-complex onset and T-wave end |
f157–f168 | QRS (ms) | Time interval between QRS-complex onset and QRS-complex end |
f169–f180 | RS (ms) | Time interval between QRS-complex peak and QRS-complex end |
f181–f192 | ToTp (ms) | Time interval between T-wave onset and T-wave peak |
f193–f204 | TpTe (ms) | Time interval between T-wave peak and T-wave end |
f205–f216 | ρ (adi) | Median correlation coefficient between ECG beats and median ECG beat |
Feature ID | Feature Name | Feature Description |
---|---|---|
f217 | GQT (ms) | Global QT interval |
f218 | GQRS (ms) | Global QRS duration |
f219 | mnRR (ms) | Mean RR interval |
f220 | mnHR (bpm) | Mean HR |
f221 | MHR (bpm) | Maximum value of HR |
f222 | mHR (bpm) | Minimum value of HR |
f223 | mHR/MHR (-) | Minimum over maximum values of HR |
f224 | stdRR (ms) | Standard deviation of RR intervals |
f225 | PRD (ms) | Dispersion of the time intervals between P-wave peak and R-wave peak over the 12 leads |
f226 | PSD (ms) | Dispersion of the time intervals between P-wave peak and J point over the 12 leads |
f227 | PTD (ms) | Dispersion of the time intervals between P-wave peak and T-wave end over the 12 leads |
f228 | QTD (ms) | Dispersion of the time intervals between QRS-complex onset and T-wave end over the 12 leads |
f229 | QRSD (ms) | Dispersion of the time intervals between QRS-complex onset and QRS-complex end over the 12 leads |
f230 | RSD (ms) | Dispersion of the time intervals between QRS-complex peak and QRS-complex end over the 12 leads |
f231 | ToTpD (ms) | Dispersion of the time intervals between T-wave onset and T-wave peak over the 12 leads |
f232 | TpTeD (ms) | Dispersion of the time interval between T-wave peak and T-wave end over the 12 leads |
Feature ID | Feature Name | Feature Description |
---|---|---|
f233 | MPV (μV) | Magnitude of the maximal P vector |
f234 | EPV (°) | Elevation of the maximal P vector |
f235 | APV (°) | Azimuth of the maximal P vector |
f236 | MQRSV (μV) | Magnitude of the maximal QRS vector |
f237 | EQRSV (°) | Elevation of the maximal QRS vector |
f238 | AQRSV (°) | Azimuth of the maximal QRS vector |
f239 | MJV (μV) | Magnitude of the maximal J vector |
f240 | EJV (°) | Elevation of the maximal J vector |
f241 | AJV (°) | Azimuth of the maximal J vector |
f242 | MTV (μV) | Magnitude of the maximal T vector |
f243 | ETV (°) | Elevation of the maximal T vector |
f244 | ATV (°) | Azimuth of the maximal T vector |
f245 | MVG (μV) | Magnitude of the ventricular gradient |
f246 | EVG (°) | Elevation of the ventricular gradient |
f247 | AVG (°) | Azimuth of the ventricular gradient |
f248 | PI (μV∙ms) | Integral of the P wave in the vector magnitude |
f249 | QRSI (μV∙ms) | Integral of the QRS complex in the vector magnitude |
f250 | TIon (μV∙ms) | Integral of the left front of the T wave on the vector magnitude |
f251 | TIoff (μV∙ms) | Integral of the right front of the T wave on the vector magnitude |
f252 | PQRS-SA (°) | Spatial angle between the P vector and the QRS vector |
f253 | QRST-SA (°) | Spatial angle between the QRS vector and the T vector |
f254 | PT-SA (°) | Spatial angle between the P vector and the T vector |
Architecture | AUC (%) | ACC (%) | ||||
---|---|---|---|---|---|---|
Number of Layer | Distribution of Neurons | Training | Hold-Out Testing Fold | Training | Hold-Out Testing Fold | |
fold 1 | 3 | [101 100 555] | 99.11 | 86.05 | 99.01 | 79.21 |
fold 2 | 3 | [101 100 513] | 95.75 | 86.42 | 97.28 | 83.17 |
fold 3 | 1 | [736] | 94.61 | 86.00 | 97.24 | 81.19 |
fold 4 | 3 | [196 188 245] | 100.00 | 80.89 | 100.00 | 79.21 |
fold 5 | 4 | [101 100 100 228] | 97.41 | 82.18 | 98.51 | 79.21 |
Overall | - | - | 97.38 ± 2.25 | 84.31 ± 2.58 | 98.42 ± 1.17 | 80.40 ± 1.77 |
Ranking | AUC (%) | FR | ||||
---|---|---|---|---|---|---|
Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | ||
1 | TpTeS on lead V6 | mnNN | mnNN | mnNN | mnNN | mnNN |
(0.65) | (0.78) | (0.78) | (0.78) | (0.78) | (0.78) | |
2 | PR on lead aVL | PT on lead V2 | QT on lead V6 | PT on lead II | PT on lead V6 | QT on lead aVR |
(0.65) | (0.78) | (0.77) | (0.71) | (0.74) | (0.75) | |
3 | SDNN | PT on lead aVR | QT on lead aVR | PT on lead aVR | PT on lead V4 | PT on lead aVR |
(0.64) | (0.78) | (0.77) | (0.72) | (0.77) | (0.76) | |
4 | PTD | PT on lead II | QT on lead aVF | QT on lead aVR | PT on lead V5 | PT on lead I |
(0.64) | (0.77) | (0.77) | (0.77) | (0.74) | (0.75) | |
5 | PS on lead aVL | PT on lead I | QT on lead II | PT on lead V4 | PT on lead II | QT on lead II |
(0.64) | (0.77) | (0.76) | (0.75) | (0.78) | (0.75) | |
6 | QA on lead II | PT on lead V3 | QT on lead V4 | PT on lead V1 | PT on lead aVR | QT on lead V6 |
(0.63) | (0.76) | (0.76) | (0.71) | (0.78) | (0.75) | |
7 | TpTeS on lead V5 | PT on lead V1 | QT on lead V5 | QT on lead II | QT on lead aVR | PT on lead V6 |
(0.63) | (0.76) | (0.76) | (0.76) | (0.77) | (0.78) | |
8 | QA on lead V6 | QT on lead II | PT on lead V6 | QT on lead aVF | QT on lead II | PT on lead II |
(0.63) | (0.75) | (0.76 | (0.77) | (0.76) | (0.77) | |
9 | QRST-SA | QT on lead aVR | QT on lead V3 | PT on lead I | PT on lead I | QT on lead I |
(0.63) | (0.75) | (0.76 | (0.72) | (0.76) | (0.74) | |
10 | ToTpD | PT on lead V4 | QT on lead V2 | QT on lead V1 | PT on lead aVL | QT on lead aVL |
(0.63) | (0.75) | (0.75) | (0.75) | (0.73) | (0.74) |
Ref. | Input | Output | Method | Validation | Performance | Interpretation |
---|---|---|---|---|---|---|
[17] | Hexaxial feature mapping computed by extracting signal from ECG-image dataset of cardiac and COVID-19 patients | COVID vs. No COVID | CNN | 5-fold cross-validation | AUC = 95% | - |
[18] | ECG-image dataset of cardiac and COVID-19 patients | TEST1: COVID vs. Other vs. Normal TEST 2: COVID vs. Myocardial Infarction vs. Abnormal heartbeat vs. History of Myocardial Infarction vs. Normal | CNN | 10-fold cross-validation | AUC = 99% | - |
[19] | ECG-image dataset of cardiac and COVID-19 patients | COVID vs. No COVID | Efficient ECGNet | Static train/test data division | ACC = 99% | Grad-CAM |
[20] | 1386 ECGs recorded from hospitalized COVID-19 patients | Survived vs. Dead | CNN-LSTM | 10-fold stratified cross-validation | AUC = 60% | - |
[21] | ECG of COVIDSQUARED and ECG of Physionet database | COVID vs. Non COVID | CNN | 7-fold cross-validation | ACC = 85% | - |
[22] | 1453 adult patients affected by COVID-19 | Severity Stratification | CNN | Static train/test data division | AUC = 73% | Heatmap |
This work | ECG features extracted from COVIDSQUARED | Survived vs. Dead | NN | 5-fold cross-validation | AUC = 84% | LIME |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sbrollini, A.; Leoni, C.; Morettini, M.; Rivolta, M.W.; Swenne, C.A.; Mainardi, L.; Burattini, L.; Sassi, R. Identification of Electrocardiographic Patterns Related to Mortality with COVID-19. Appl. Sci. 2024, 14, 817. https://doi.org/10.3390/app14020817
Sbrollini A, Leoni C, Morettini M, Rivolta MW, Swenne CA, Mainardi L, Burattini L, Sassi R. Identification of Electrocardiographic Patterns Related to Mortality with COVID-19. Applied Sciences. 2024; 14(2):817. https://doi.org/10.3390/app14020817
Chicago/Turabian StyleSbrollini, Agnese, Chiara Leoni, Micaela Morettini, Massimo W. Rivolta, Cees A. Swenne, Luca Mainardi, Laura Burattini, and Roberto Sassi. 2024. "Identification of Electrocardiographic Patterns Related to Mortality with COVID-19" Applied Sciences 14, no. 2: 817. https://doi.org/10.3390/app14020817
APA StyleSbrollini, A., Leoni, C., Morettini, M., Rivolta, M. W., Swenne, C. A., Mainardi, L., Burattini, L., & Sassi, R. (2024). Identification of Electrocardiographic Patterns Related to Mortality with COVID-19. Applied Sciences, 14(2), 817. https://doi.org/10.3390/app14020817