High-Speed Cell Assembly with Piezo-Driven Two-Finger Microhand
Abstract
:1. Introduction
2. System Setup
2.1. Two-Finger Microhand Structure
2.2. Construction of Micromanipulation Robot System
3. Methods of Grasping and Releasing Cells
3.1. Hemispherical End-Effector
3.2. Combination of Gel Coating and Vibration-Based Release
3.3. Determination of the Optimal Grasping and Releasing Condition
4. Automated Assembly Strategy for Cells and Experimental Results
4.1. Visual Recognition of the Operational Target and End-Effector
4.2. Operational Path Planning
4.3. Automated Operation Process
4.4. Automated Assembly Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsai, C.H.D.; Kaneko, M.; Sakuma, S.; Arai, F. Observability of cell stiffness in micro-channel method. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 2807–2813. [Google Scholar]
- Tsai, C.H.D.; Kaneko, M.; Arai, F. Evaluation of cell impedance using a μ-channel. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), San Diego, CA, USA, 28 August–1 September 2012; pp. 5518–5521. [Google Scholar]
- Noori, A.; Selvaganapathy, P.R.; Wilson, J. Microinjection in a microfluidic format using flexible and compliant channels and electroosmotic dosage control. Lab Chip 2009, 9, 3202–3211. [Google Scholar] [CrossRef] [PubMed]
- Veschgini, M.; Gebert, F.; Khangai, N.; Ito, H.; Suzuki, R.; Holstein, T.W.; Mae, Y.; Arai, T.; Tanaka, M. Tracking mechanical and morphological dynamics of regenerating Hydra tissue fragments using a two fingered micro-robotic hand. Appl. Phys. Lett. 2016, 108, 10. [Google Scholar] [CrossRef]
- Won, J.E.; Mateos-Timoneda, M.A.; Castano, O.; Planell, J.A.; Seo, S.J.; Lee, E.J.; Han, C.M.; Kim, H.W. Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering. Biotechnol. Lett. 2015, 37, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Oktay, K.; Taylan, E.; Kawahara, T.; Cillo, G.M. Robot-assisted orthotopic and heterotopic ovarian tissue transplantation techniques: Surgical advances since our first success in 2000. Fertil. Steril. 2019, 111, 604–606. [Google Scholar] [CrossRef] [PubMed]
- Sundaramurthi, D.; Rauf, S.; Hauser, C. 3D bioprinting technology for regenerative medicine applications. Int. J. Bioprinting 2016, 2, 2. [Google Scholar] [CrossRef]
- Zhang, H.; Hutmacher, D.W.; Chollet, F.; Poo, A.N.; Burdet, E. Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering. Macromol. Biosci. 2005, 5, 477–489. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Kong, M.; Wang, Z.; Costa, K.D.; Li, R.A.; Sun, D. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 2011, 11, 3656–3662. [Google Scholar] [CrossRef]
- Kirkham, G.R.; Britchford, E.; Upton, T.; Ware, J.; Gibson, G.M.; Devaud, Y.; Ehrbar, M.; Padgett, M.; Allen, S.; Buttery, L.D.; et al. Precision assembly of complex cellular microenvironments using holographic optical tweezers. Sci. Rep. 2015, 5, 8577. [Google Scholar] [CrossRef]
- Xu, T.; Hwang, G.; Andreff, N.; Régnier, S. Modeling and swimming property characterizations of scaled-up helical microswimmers. IEEE/ASME Trans. Mechatron. 2013, 19, 1069–1079. [Google Scholar] [CrossRef]
- Blümler, P.; Friedrich, R.P.; Pereira, J.; Baun, O.; Alexiou, C.; Mailänder, V. Contactless nanoparticle-based guiding of cells by controllable magnetic fields. Nanotechnol. Sci. Appl. 2021, 14, 91–100. [Google Scholar] [CrossRef]
- Cao, H.X.; Jung, D.; Lee, H.S.; Nguyen, V.D.; Choi, E.; Kang, B.; Park, J.O.; Kim, C.S. Holographic Acoustic Tweezers for 5-DoF Manipulation of Nanocarrier Clusters toward Targeted Drug Delivery. Pharmaceutics 2022, 14, 1490. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, H.; Mei, D.; Xu, C.; Weng, W. Programmable motion control and trajectory manipulation of microparticles through tri-directional symmetrical acoustic tweezers. Lab Chip 2022, 22, 1149–1161. [Google Scholar] [CrossRef]
- Paterson, L.; MacDonald, M.P.; Arlt, J.; Sibbett, W.; Bryant, P.E.; Dholakia, K. Controlled rotation of optically trapped microscopic particles. Science 2001, 292, 912–914. [Google Scholar] [CrossRef] [PubMed]
- Yue, T.; Nakajima, M.; Tajima, H.; Kojima, M.; Fukuda, T. High speed cell manipulation by dielectrophoresis and movable microstructure embedding cells fabricated inside microfluidic chips. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Algarve, Portugal, 7–12 October 2012; pp. 938–943. [Google Scholar]
- Tang, X.; Liu, X.; Li, P.; Liu, F.; Kojima, M.; Huang, Q.; Arai, T. On-Chip cell–cell interaction monitoring at single-cell level by efficient immobilization of multiple cells in adjustable quantities. Anal. Chem. 2020, 92, 11607–11616. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Sun, D.; Liu, C. Penetration force measurement and control in robotic cell microinjection. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, MO, USA, 10–15 October 2009; pp. 4701–4706. [Google Scholar]
- Liu, J.; Zhang, Z.; Wang, X.; Liu, H.; Zhao, Q.; Zhou, C.; Tan, M.; Pu, H.; Xie, S.; Sun, Y. Automated robotic measurement of 3-D cell morphologies. IEEE Robot. Autom. Lett. 2016, 2, 499–505. [Google Scholar] [CrossRef]
- Shen, Y.; Ahmad, M.R.; Nakajima, M.; Kojima, S.; Homma, M.; Fukuda, T. Cell-cell adhesion force measurement using nano picker via nanorobotic manipulators inside ESEM. In Proceedings of the 10th IEEE International Conference on Nanotechnology, Ilsan, Gyeonggi-Do, Republic of Korea, 17–20 August 2010; pp. 870–874. [Google Scholar]
- Kolb, I.; Landry, C.R.; Yip, M.C.; Lewallen, C.F.; Stoy, W.A.; Lee, J.; Felouzis, A.; Yang, B.; Boyden, E.S.; Rozell, C.J.; et al. PatcherBot: A single-cell electrophysiology robot for adherent cells and brain slices. J. Neural Eng. 2019, 16, 046003. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Moraes, C.; Ye, G.; Simmons, C.A.; Sun, Y. Single cell deposition and patterning with a robotic system. PLoS ONE 2010, 5, e13542. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Nakajima, M.; Kojima, S.; Homma, M.; Kojima, M.; Fukuda, T. Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter. Meas. Sci. Technol. 2011, 22, 115802. [Google Scholar] [CrossRef]
- Barnes, C.A.; O’HAGAN, B.M.G.; Howard, C.V.; McKerr, G. Verification of cell viability at progressively higher scanning forces using a hybrid atomic force and fluorescence microscope. J. Microsc. 2007, 228, 185–189. [Google Scholar] [CrossRef]
- Kim, B.S.; Park, J.S.; Kang, B.H.; Moon, C. Fabrication and property analysis of a MEMS micro-gripper for robotic micro-manipulation. Robot. Comput. Integr. Manuf. 2012, 28, 50–56. [Google Scholar] [CrossRef]
- Gao, X.; Yang, J.; Wu, J.; Xin, X.; Li, Z.; Yuan, X.; Shen, X.; Dong, S. Piezoelectric actuators and motors: Materials, designs, and applications. Adv. Mater. Technol. 2020, 5, 1900716. [Google Scholar] [CrossRef]
- Mohith, S.; Upadhya, A.R.; Navin, K.P.; Kulkarni, S.M.; Rao, M. Recent trends in piezoelectric actuators for precision motion and their applications: A review. Smart Mater Struct 2020, 30, 013002. [Google Scholar] [CrossRef]
- Deabs, A.; Gomaa, F.R.; Khader, K. Parallel Robot. J. Eng. Sci. Technol. Rev. 2021, 14, 6. [Google Scholar] [CrossRef]
- Kumar, S.; Wöhrle, H.; de Gea Fernández, J.; Müller, A.; Kirchner, F. A survey on modularity and distributivity in series-parallel hybrid robots. Mechatronics 2020, 68, 102367. [Google Scholar] [CrossRef]
- Taniguchi, M.; Ikeda, M.; Inagaki, A.; Funatsu, R. Ultra precision wafer positioning by six-axis micro-motion mechanism. Int. J. Jpn. Soc. Precis. Eng. 1992, 26, 35–40. [Google Scholar]
- Polit, S.; Dong, J. Development of a high-bandwidth XY nanopositioning stage for high-rate micro-/nanomanufacturing. IEEE/ASME Trans. Mechatron. 2010, 16, 724–733. [Google Scholar] [CrossRef]
- Zhang, D.; Viegas, K.; Gao, Z.; Ge, Y. June. Modeling and analysis of an enhanced compliant parallel mechanism for high accuracy micro motion. In Proceedings of the 2008 7th World Congress on Intelligent Control and Automation (WCICA), Chongqing, China, 25–27 June 2008; pp. 2289–2294. [Google Scholar]
- Diller, E.; Sitti, M. Micro-scale mobile robotics. Found. Trends® Robot. 2013, 2, 143–259. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, H.; Song, J.; Meng, X.; Wen, Y.; Sun, L. High-precision automated micromanipulation and adhesive microbonding with cantilevered micropipette probes in the dynamic probing mode. IEEE/ASME Trans. Mechatron. 2018, 23, 1425–1435. [Google Scholar] [CrossRef]
- Liu, H.; Wen, J.; Xiao, Y.; Liu, J.; Hopyan, S.; Radisic, M.; Simmons, C.A.; Sun, Y. In situ mechanical characterization of the cell nucleus by atomic force microscopy. ACS Nano 2014, 8, 3821–3828. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.K.; Liu, X.; Sun, Y. Autonomous robotic pick-and-place of microobjects. IEEE Trans. Robot. 2009, 26, 200–207. [Google Scholar] [CrossRef]
- Wang, F.; Li, P.; Wang, D.; Li, L.; Xie, S.; Liu, L.; Wang, Y.; Li, W.J. Mechanically modulated dewetting by atomic force microscope for micro-and nano-droplet array fabrication. Sci. Rep. 2014, 4, 6524. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yang, J.; Wang, Y.; Wang, W.; Liu, L. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities. Nanoscale 2018, 10, 21046–21051. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Regnier, S. Three-dimensional automated micromanipulation using a nanotip gripper with multi-feedback. J. Micromechan. Microeng. 2009, 19, 075009. [Google Scholar] [CrossRef]
- Lu, Z.; Moraes, C.; Zhao, Y.; You, L.; Simmons, C.A.; Sun, Y. A micromanipulation system for single cell deposition. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010; pp. 494–499. [Google Scholar]
- Nguyen, C.N.; Ohara, K.; Avci, E.; Takubo, T.; Mae, Y.; Arai, T. Real-time precise 3D measurement of micro transparent objects using All-In-Focus imaging system. J. Micro-Nano Mechatron. 2012, 7, 21–31. [Google Scholar] [CrossRef]
- Kang, W.; Robitaille, M.C.; Merrill, M.; Teferra, K.; Kim, C.; Raphael, M.P. Mechanisms of cell damage due to mechanical impact: An in vitro investigation. Sci. Rep. 2020, 10, 12009. [Google Scholar] [CrossRef] [PubMed]
- Fulda, S.; Gorman, A.M.; Hori, O.; Samali, A. Cellular stress responses: Cell survival and cell death. J. Cell Biol. 2010, 2010, 214074. [Google Scholar] [CrossRef]
Amplitude | 5 μm | 10 μm | 15 μm | 20 μm | |
---|---|---|---|---|---|
Frequency | |||||
25 Hz | 98% | 98% | 98% | 100% | |
50 Hz | 98% | 98% | 98% | 100% | |
75 Hz | 100% | 100% | 100% | 100% | |
100 Hz | 100% | 100% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Deng, Y.; Chen, J.; Kojima, M.; Huang, Q.; Arai, T.; Liu, X. High-Speed Cell Assembly with Piezo-Driven Two-Finger Microhand. Appl. Sci. 2024, 14, 617. https://doi.org/10.3390/app14020617
Zhao Y, Deng Y, Chen J, Kojima M, Huang Q, Arai T, Liu X. High-Speed Cell Assembly with Piezo-Driven Two-Finger Microhand. Applied Sciences. 2024; 14(2):617. https://doi.org/10.3390/app14020617
Chicago/Turabian StyleZhao, Yue, Yan Deng, Junnan Chen, Masaru Kojima, Qiang Huang, Tatsuo Arai, and Xiaoming Liu. 2024. "High-Speed Cell Assembly with Piezo-Driven Two-Finger Microhand" Applied Sciences 14, no. 2: 617. https://doi.org/10.3390/app14020617
APA StyleZhao, Y., Deng, Y., Chen, J., Kojima, M., Huang, Q., Arai, T., & Liu, X. (2024). High-Speed Cell Assembly with Piezo-Driven Two-Finger Microhand. Applied Sciences, 14(2), 617. https://doi.org/10.3390/app14020617