State Estimation for Measurement-Saturated Memristive Neural Networks with Missing Measurements and Mixed Time Delays Subject to Cyber-Attacks: A Non-Fragile Set-Membership Filtering Framework
Abstract
:1. Introduction
2. Problem Formulation
3. Main Result
3.1. Estimator Design
3.2. Optimization Problem
4. Simulation Example
- Case 1.
- The true state and its estimation values of the MNNs without attack and MMs are shown below.
- Case 2.
- We consider the situation when cyber-attacks and MMs occur; the occurrences of attacks and MMs are shown below.
- Case 3.
- In this case, we consider a network-based test rig that consists of a plant (DC servo system) and a remote controller; the DC servo system is identified to be a third-order system, whose parameters are from [55]:
5. Discussion
5.1. The Analysis of Experimental Results
5.2. Practicability of the Proposed Estimation Framework
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Memristive devices and systems. Proc. IEEE 1976, 64, 209–223. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Shen, B.; Alsaadi, F. state estimation for discrete-time memristive recurrent neural networks with stochastic time-delays. Int. J. Gen. Syst. 2016, 45, 633–647. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Fang, J.; Li, H. Mixed H∞/L2 − L∞ State Estimation for Delayed Memristive Neural Networks with Markov Switching Parameters. Neurocomputing 2019, 340, 342–354. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L. State estimation for proportional delayed complex-valued memristive neural networks. Inf. Sci. 2024, 680, 121–150. [Google Scholar] [CrossRef]
- Ding, S.; Wang, Z.; Wang, J.; Zhang, H. H∞ state estimation for memristive neural networks with time-varying delays: The discrete-time case. Neural Netw. 2016, 84, 47–56. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, L.; Ban, L. H∞ state estimation for discrete memristive neural networks with signal quantization and probabilistic time delay. Syst. Sci. Control Eng. 2021, 9, 764–774. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, Y.; Cheng, C.; Ma, G. Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression. Neurocomputing 2020, 376, 95–102. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Liu, C.; Coombes, M.; Chen, W. Auxiliary Particle Filtering Over Sensor Networks Under Protocols of Amplify-and-Forward and Decode-and-Forward Relays. IEEE Trans. Signal Inf. Process. Over Netw. 2022, 8, 883–893. [Google Scholar] [CrossRef]
- Sheng, L.; Wang, Z.; Zou, L.; Alsaadi, F. Event-Based H∞ State Estimation for Time-Varying Stochastic Dynamical Networks With State- and Disturbance-Dependent Noises. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2382–2394. [Google Scholar] [CrossRef]
- Boada, B.L.; Boada, M.J.L.; Diaz, V. A robust observer based on energy-to-peak filtering in combination with neural networks for parameter varying systems and its application to vehicle roll angle estimation. Mechatronics 2018, 50, 196–204. [Google Scholar] [CrossRef]
- Schweppe, F. Recursive state estimation: Unknown but bounded errors and system inputs. IEEE Trans. Autom. Control 1968, 13, 22–28. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Z.; Zou, L.; Liu, H.; Alsaadi, F. Zonotopic multi-sensor fusion estimation with mixed delays under try-once-discard protocol: A set-membership framework. Inf. Fusion 2023, 91, 681–693. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, L.; Zhang, M.; Guo, J.; Bo, Y. Distributed Set-Membership Filtering for Nonlinear Time-Varying Systems With Dynamic Coding-Decoding Communication Protocol. IEEE Syst. J. 2022, 16, 2958–2967. [Google Scholar] [CrossRef]
- Wei, G.; Liu, S.; Song, Y.; Liu, Y. Probability-guaranteed set-membership filtering for systems with incomplete measurements. Automatica 2015, 60, 12–16. [Google Scholar] [CrossRef]
- Ding, D.; Wang, Z.; Han, Q. A Set-Membership Approach to Event-Triggered Filtering for General Nonlinear Systems Over Sensor Networks. IEEE Trans. Autom. Control 2020, 65, 1792–1799. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Z.; Zou, L.; Chen, Y.; Sheng, W. Event-Triggered Set-Membership State Estimation for Complex Networks: A Zonotopes-Based Method. IEEE Trans. Netw. Sci. Eng. 2022, 9, 1175–1186. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Chen, J.; Zheng, X. A quantized set-membership estimation-based heading control method of unmanned surface vessels under unknown-but-bounded wave-induced disturbances. Asian J. Control 2023, 25, 3105–3118. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Gu, W.; Yang, F.; Liu, Z. Set-membership filtering for automatic guided vehicles with unknown-but-bounded noises. Trans. Inst. Meas. Control 2022, 44, 716–725. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, J.; Chen, D.; Wei, Y.; Du, J. Non-fragile Suboptimal Set-membership Estimation for Delayed Memristive Neural Networks with Quantization via Maximum-error-first Protocol. Int. J. Control Autom. Syst. 2020, 18, 1904–1914. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Y.; Liu, H.; Chen, D.; Du, J. Non-fragile set-membership estimation for sensor-saturated memristive neural networks via weighted try-once-discard protocol. IET Control Theory Appl. 2020, 14, 1671–1680. [Google Scholar] [CrossRef]
- Liu, L.; Ma, L.; Zhang, J.; Bo, Y. Distributed non-fragile set-membership filtering for nonlinear systems under fading channels and bias injection attacks. Int. J. Syst. Sci. 2021, 52, 1192–1205. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Z.; Lam, H.; Kyriakoulis, N. Distributed event-based set-Membership filtering for a Class of Nonlinear Systems with sensor saturations over sensor networks. IEEE Trans. Cybern. 2017, 47, 3772–3783. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, Z.; Lam, H. Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations. IEEE Trans. Autom. Control 2017, 62, 3524–3531. [Google Scholar] [CrossRef]
- Ding, D.; Han, Q.; Ge, X. Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey. Kybernetika 2020, 56, 5–34. [Google Scholar] [CrossRef]
- Hu, J.; Li, J.; Kao, Y.; Chen, Y. Optimal distributed filtering for nonlinear saturated systems with random access protocol and missing measurements: The uncertain probabilities case. Appl. Math. Comput. 2022, 418, 235–246. [Google Scholar] [CrossRef]
- Yang, F.; Li, Y. Set-membership filtering for systems with sensor saturation. Automatica 2009, 45, 1896–1902. [Google Scholar] [CrossRef]
- Song, X.; Rong, L.; Li, B.; Wang, Z.; Li, J. Joint state and fault estimation for nonlinear systems with missing measurements and random component faults under Round-Robin Protocol. Int. J. Electr. Power Energy Syst. 2016, 154, 429–437. [Google Scholar] [CrossRef]
- Wei, G.; Wang, Z.; Shu, H. Robust filtering with stochastic nonlinearities and multiple missing measurements. Automatica 2009, 45, 836–841. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.; Dong, H.; Gao, H. Recent Advances on Recursive Filtering and Sliding Mode Design for Networked Nonlinear Stochastic Systems: A Survey. Math. Probl. Eng. 2013, 32, 24–33. [Google Scholar] [CrossRef]
- Shen, B.; Wang, Z.; Wang, D.; Li, Q. State-Saturated Recursive Filter Design for Stochastic Time-Varying Nonlinear Complex Networks Under Deception Attacks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 3788–3800. [Google Scholar] [CrossRef]
- Liu, L.; Ma, L.; Wang, Y.; Zhang, J.; Bo, Y. Distributed set-membership filtering for time-varying systems under constrained measurements and replay attacks. J. Frankl.-Inst.-Eng. Appl. Math. 2020, 357, 4983–5003. [Google Scholar] [CrossRef]
- Geng, H.; Wang, Z.; Hu, J.; Alsaadi, F.; Cheng, Y. Outlier-resistant sequential filtering fusion for cyber-physical systems with quantized measurements under denial-of-service attacks. Inf. Sci. 2023, 628, 488–503. [Google Scholar] [CrossRef]
- Hu, L.; Wang, Z.; Han, Q.; Liu, X. State estimation under false data injection attacks: Security analysis and system protection. Automatica 2018, 87, 176–183. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Z.; Wei, G.; Han, Q. A dynamic event-triggered approach to observer-based PID security control subject to deception attacks. Automatica 2020, 120, 891–900. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Z.; Hu, L.; J, J. State estimation under joint false data injection attacks: Dealing with constraints and insecurity. IEEE Trans. Autom. Control 2022, 67, 6745–6753. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Zou, L.; Chen, B.; Yu, L. A dynamic encryption-decryption scheme for replay attack detection in cyber-physical systems. Automatica 2023, 151, 34–47. [Google Scholar] [CrossRef]
- Wang, X.; Ding, D.; Ge, X.; Han, Q. Neural-network-based control for discrete-time nonlinear systems with denial-of-service attack: The adaptive event-triggered case. IEEE/CAA J. Autom. Sin. 2022, 32, 2760–2779. [Google Scholar] [CrossRef]
- Xiao, S.; Ge, X.; Han, Q.; Zhang, Y. Secure Distributed Adaptive Platooning Control of Automated Vehicles Over Vehicular Ad-Hoc Networks Under Denial-of-Service Attacks. IEEE Trans. Cybern. 2022, 52, 12003–12015. [Google Scholar] [CrossRef]
- Ding, D.; Liu, H.; Dong, H.; Liu, H. Resilient Filtering of Nonlinear Complex Dynamical Networks Under Randomly Occurring Faults and Hybrid Cyber-Attacks. IEEE Trans. Netw. Sci. Eng. 2022, 9, 2341–2352. [Google Scholar] [CrossRef]
- Li, M.; Liang, J. State estimation for 2-D uncertain systems with redundant channels and deception attacks: A set-membership method. Appl. Math. Comput. 2023, 457, 3184–3194. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Z.; Zou, L.; Guo, J. Set-membership filtering for time-varying complex networks with uniform quantisations over randomly delayed redundant channels. Int. J. Syst. Sci. 2020, 51, 3364–3377. [Google Scholar] [CrossRef]
- Li, J.; Wei, G.; Ding, D.; Li, Y. Set-membership filtering for discrete time-varying nonlinear systems with censored measurements under Round-Robin protocol. Neurocomputing 2018, 281, 20–26. [Google Scholar] [CrossRef]
- Li, X.; Han, F.; Hou, N.; Dong, H.; Liu, H. Set-membership filtering for piecewise linear systems with censored measurements under Round-Robin protocol. Int. J. Syst. Sci. 2020, 51, 1578–1588. [Google Scholar] [CrossRef]
- Rana, M.; Li, L.; Su, S. Cyber Attack Protection and Control of Microgrids. IEEE-CAA J. Autom. Sin. 2018, 5, 602–609. [Google Scholar] [CrossRef]
- Qu, B.; Wang, Z.; Shen, B.; Dong, H. Secure Particle Filtering With Paillier Encryption-Decryption Scheme: Application to Multi-machine Power Grids. IEEE Trans. Smart Grid 2023, 15, 863–873. [Google Scholar] [CrossRef]
- Luan, X.; Shi, Y.; Liu, F. Unscented Kalman Filtering For Greenhouse Climate Control Systems With Missing Measurement. Int. J. Innov. Comput. Inf. Control. 2012, 8, 2173–2180. [Google Scholar]
- Befekadu, G.K.; Gupta, V.; Antsaklis, P.J. Risk-Sensitive Control Under Markov Modulated Denial-of-Service (DoS) Attack Strategies. IEEE Trans. Autom. Control 2015, 60, 3299–3304. [Google Scholar] [CrossRef]
- Yi, X.; Yu, H.; Wang, P.; Liu, S.; Ma, L. Encoding–decoding-based secure filtering for neural networks under mixed attacks. Neurocomputing 2020, 508, 71–78. [Google Scholar] [CrossRef]
- Zou, L.; Wang, Z.; Hu, J.; Gao, H. On H∞ Finite-Horizon Filtering Under Stochastic Protocol: Dealing With High-Rate Communication Networks. IEEE Trans. Autom. Control 2017, 62, 4884–4890. [Google Scholar] [CrossRef]
- Zhu, K.; Hu, J.; Liu, Y.; Alotaibi, N.; Alsaadi, F. On L2 − L∞ output-feedback control scheduled by stochastic communication protocol for two-dimensional switched systems. Int. J. Syst. Sci. 2021, 52, 2961–2976. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Dong, H.; Fei, W. Delay-distribution-dependent state estimation for neural networks under stochastic communication protocol with uncertain transition probabilities. Neural Netw. 2020, 130, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, Z.; Han, Q.; Liu, H. Distributed Quasiconsensus Control for Stochastic Multiagent Systems Under Round-Robin Protocol and Uniform Quantization. IEEE Trans. Cybern. 2022, 52, 6721–6732. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liang, J.; Wang, F. Robust set-membership filtering for two-dimensional systems with sensor saturation under the Round-Robin protocol. Int. J. Syst. Sci. 2022, 53, 2773–2785. [Google Scholar] [CrossRef]
- Li, X.; Dong, H.; Wang, Z.; Han, F. Set-membership filtering for state-saturated systems with mixed time-delays under weighted try-once-discard protocol. Automatica 2018, 74, 341–348. [Google Scholar] [CrossRef]
- Zou, L.; Wang, Z.; Gao, H. Set-membership filtering for time-varying systems with mixed time-delays under Round-Robin and Weighted Try-Once-Discard protocols. Automatica 2016, 74, 341–348. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Z.; Shen, B.; Dong, H. Outlier-resistant recursive filtering for multisensor multirate networked systems under weighted try-once-discard protocol. IEEE Trans. Cybern. 2021, 51, 4897–4908. [Google Scholar] [CrossRef]
- Wang, F.; Liang, J.; Lam, J.; Yang, J.; Zhao, C. Robust Filtering for 2-D Systems With Uncertain-Variance Noises and Weighted Try-Once-Discard Protocols. IEEE Trans. Syst. Man-Cybern.-Syst. 2023, 53, 2914–2924. [Google Scholar] [CrossRef]
- Zou, L.; Wang, Z.; Hu, J.; Liu, Y.; Liu, X. Communication-protocol-based analysis and synthesis of networked systems: Progress, prospects and challenges. Int. J. Syst. Sci. 2021, 52, 3013–3034. [Google Scholar] [CrossRef]
- Yang, H.; Yan, H.; Zhou, J.; Zhang, Y.; Chang, Y. Neural-Network-Based Set-Membership Filtering Under WTOD Protocols via a Novel Event-Triggered Compensation Mechanism. IEEE Trans. Syst. Man, Cybern. Syst. 2024, 54, 2954–2964. [Google Scholar] [CrossRef]
- Li, X.; Gong, R.; Zhu, L. Interval Observer Design for Nonlinear Interconnected Systems via Ellipsoid Approach. Int. J. Control Autom. Syst. 2024, 22, 807–815. [Google Scholar] [CrossRef]
- Boyd, S.; Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA, USA, 1994; Volume 15. [Google Scholar]
- Khalil, H. Nonlinear Systems; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Ge, X.; Han, Q.; Wu, Q.; Zhang, X. Resilient and Safe Platooning Control of Connected Automated Vehicles Against Intermittent Denial-of-Service Attacks. IEEE-CAA J. Autom. Sin. 2023, 10, 1234–1251. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, Z.; Deng, C.; Wen, B. Adaptive fuzzy global sliding mode control for trajectory tracking of quadrotor UAVs. Nonlinear Dyn. 2019, 97, 609–627. [Google Scholar] [CrossRef]
Estimation Approach | Calculated Load (s) | Sum of the MSE |
---|---|---|
approach in [27] | 24.213 | 2.010 |
approach in [55] | 19.733 | 1.469 |
approach in [11] | 7.462 | 8.134 |
our approach | 21.452 | 0.297 |
Estimation Approach | Calculated Load (s) | Sum of the MSE | MSE during MMs |
---|---|---|---|
approach in [27] | 31.462 | 2.081 | 61.156 |
approach in [55] | 24.421 | 1.319 | 21.698 |
approach in [11] | 8.421 | 8.127 | 75.927 |
our approach | 26.597 | 0.251 | 13.251 |
Estimation Approach | Calculated Load (s) | Sum of the MSE | MSE during MMs |
---|---|---|---|
approach in [55] | 1.869 | 1.275 | 10.970 |
our approach | 2.023 | 0.098 | 1.892 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, P.; Wang, J.; Lou, P.; Li, J. State Estimation for Measurement-Saturated Memristive Neural Networks with Missing Measurements and Mixed Time Delays Subject to Cyber-Attacks: A Non-Fragile Set-Membership Filtering Framework. Appl. Sci. 2024, 14, 8936. https://doi.org/10.3390/app14198936
Wang Z, Wang P, Wang J, Lou P, Li J. State Estimation for Measurement-Saturated Memristive Neural Networks with Missing Measurements and Mixed Time Delays Subject to Cyber-Attacks: A Non-Fragile Set-Membership Filtering Framework. Applied Sciences. 2024; 14(19):8936. https://doi.org/10.3390/app14198936
Chicago/Turabian StyleWang, Ziyang, Peidong Wang, Jiasheng Wang, Peng Lou, and Juan Li. 2024. "State Estimation for Measurement-Saturated Memristive Neural Networks with Missing Measurements and Mixed Time Delays Subject to Cyber-Attacks: A Non-Fragile Set-Membership Filtering Framework" Applied Sciences 14, no. 19: 8936. https://doi.org/10.3390/app14198936
APA StyleWang, Z., Wang, P., Wang, J., Lou, P., & Li, J. (2024). State Estimation for Measurement-Saturated Memristive Neural Networks with Missing Measurements and Mixed Time Delays Subject to Cyber-Attacks: A Non-Fragile Set-Membership Filtering Framework. Applied Sciences, 14(19), 8936. https://doi.org/10.3390/app14198936