A Brief Survey on Deep Learning-Based Temporal Knowledge Graph Completion
Abstract
:1. Introduction
- For the first time, we propose a survey that analyzes the existing DL-based TKGC methods to date and further subdivide them into eight categories according to their core techniques.
- We summarize eight common benchmark datasets and the general evaluation protocol.
- We point out three future directions for TKGC, providing new ideas for the work of relevant researchers.
2. Background
2.1. Task Definition
- (i)
- Subject entity prediction: for an incomplete temporal fact , predict the subject entity s from the entity set at timestamp .
- (ii)
- Object entity prediction: for an incomplete temporal fact , predict the object entity o from the entity set at timestamp .
- (iii)
- Relation prediction: for an incomplete temporal fact , predict the relation r from the relation set at timestamp .
2.2. Benchmark Datasets
2.3. Evaluation Protocol
3. Deep Learning-Based TKGC Methods
Categories | TKGC Methods | Extended from Static KGC Methods | Encoder–Decoder |
---|---|---|---|
LSTM-based methods | TA-TransE [27] | TransE [17] | ✘ |
TA-DISTMULT [27] | DISTMULT [19] | ✘ | |
TA-TransR [28] | TransR [18] | ✘ | |
CNN-based methods | CATKGC [29] | ✘ | ✘ |
ConvTKG [30] | ✘ | ✔ | |
SANe [31] | ✘ | ✘ | |
SANe+ [32] | ✘ | ✘ | |
CapsNet-based methods | TempCaps [33] | CapsE [20] | ✘ |
BiQCap [34] | ✘ | ✘ | |
Attention-based methods | RoAN [35] | SimplE [22] | ✘ |
HSAE [36] | ✘ | ✔ | |
GNN-based methods | TGAP [37] | ✘ | ✔ |
STRGNN [38] | ✘ | ✔ | |
HyGNet [39] | ✘ | ✘ | |
GCN-based methods | TeMP [40] | TransE [17] | ✔ |
MtGCN [41] | ConvTransE [26] | ✔ | |
TAGCN [42] | ConvE [23] | ✔ | |
TAL-TKGC [43] | ✘ | ✘ | |
THOR [44] | ✘ | ✘ | |
GAN-based methods | IAGAT [45] | ✘ | ✘ |
DEGAT [46] | ConvKB [25] | ✔ | |
T-GAE [47] | ConvKB [25] | ✔ | |
Language model-based methods | SToKE [48] | ✘ | ✘ |
Llama-2-7b-CoH [49] | ✘ | ✘ | |
Vicuna-7b-CoH [49] | ✘ | ✘ |
3.1. LSTM-Based Methods
3.2. CNN-Based Methods
3.3. CapsNet-Based Methods
3.4. Attention-Based Methods
3.5. GNN-Based Methods
3.6. GCN-Based Methods
3.7. GAN-Based Methods
3.8. Language Model-Based Methods
4. Performance Comparison of Deep Learning-Based TKGC Methods
5. Conclusions and Future Directions
- Few-shot TKGC. The relations in TKGs obey the long-tail distribution; in other words, a large portion of relations have only a few quadruples in TKGs. Therefore, few-shot TKGC (one-shot and zero-shot TKGC can be seen as special kinds of few-shot TKGC) is a research direction worthy of great attention. Although several approaches [72,73] have been proposed to try to solve the few-shot TKGC task, this direction is still in its infancy. In addition, we can draw on the ideas of the existing static few-shot KGC methods [74], especially those based on large language models and rule-based methods, to propose methods with high representation ability and interpretability.
- Various KGC. At present, there are many different types of KGs, including static knowledge graphs, temporal knowledge graphs, few-shot knowledge graphs, few-shot temporal knowledge graphs, and spatio-temporal knowledge graphs [75], etc. How to solve the problem of completing these knowledge graphs with a unified method is one of the key points of future research.
- Interpretability. Temporal knowledge graphs transform complex real-world information into structured data that can provide interpretability analysis and decision support for its downstream applications. Although the existing temporal knowledge graph completion methods based on deep learning have achieved state-of-the-art performance, the inherent characteristics of the structured data of temporal knowledge graphs are seriously affected due to the inexplicability of the deep learning methods itself. Therefore, improving the interpretability of temporal knowledge graph completion by researching the interpretability of deep learning methods [76,77] is a promising direction in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Lipka, N.; Rossi, R.A.; Siu, A.; Zhang, R.; Derr, T. Knowledge graph prompting for multi-document question answering. Proc. Aaai Conf. Artif. Intell. 2024, 38, 19206–19214. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Y.; Xia, L.; Huang, C. Diffkg: Knowledge graph diffusion model for recommendation. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining, Merida, Mexico, 4–8 March 2024; pp. 313–321. [Google Scholar]
- Xu, H.; Bao, J. Dynamic knowledge graph-based dialogue generation with improved adversarial meta-learning. In Artificial Intelligence and Human-Computer Interaction; IOS Press: Amsterdam, The Netherlands, 2024; pp. 13–20. [Google Scholar]
- Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 9–12 June 2008; pp. 1247–1250. [Google Scholar]
- Liu, H.; Zhou, S.; Chen, C.; Gao, T.; Xu, J.; Shu, M. Dynamic knowledge graph reasoning based on deep reinforcement learning. Knowl. Based Syst. 2022, 241, 108235. [Google Scholar] [CrossRef]
- Erxleben, F.; Günther, M.; Krötzsch, M.; Mendez, J.; Vrandecic, D. Introducing Wikidata to the Linked Data Web. In Proceedings of the Semantic Web—ISWC 2014—13th International Semantic Web Conference, Riva del Garda, Italy, 19–23 October 2014; Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C.A., Vrandecic, D., Groth, P., Noy, N.F., Janowicz, K., Goble, C.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. Proceedings, Part I, Lecture Notes in Computer Science. Volume 8796, pp. 50–65. [Google Scholar] [CrossRef]
- Mahdisoltani, F.; Biega, J.; Suchanek, F.M. YAGO3: A Knowledge Base from Multilingual Wikipedias. In Proceedings of the Seventh Biennial Conference on Innovative Data Systems Research, CIDR 2015, Asilomar, CA, USA, 4–7 January 2015; Online Proceedings. Available online: https://www.cidrdb.org (accessed on 7 January 2015).
- Mo, C.; Wang, Y.; Jia, Y.; Liao, Q. Survey on Temporal Knowledge Graph. In Proceedings of the Sixth IEEE International Conference on Data Science in Cyberspace, DSC 2021, Shenzhen, China, 9–11 October 2021; pp. 294–300. [Google Scholar] [CrossRef]
- Cai, L.; Mao, X.; Zhou, Y.; Long, Z.; Wu, C.; Lan, M. A Survey on Temporal Knowledge Graph: Representation Learning and Applications. arXiv 2024, arXiv:2403.04782. [Google Scholar] [CrossRef]
- Cai, B.; Xiang, Y.; Gao, L.; Zhang, H.; Li, Y.; Li, J. Temporal Knowledge Graph Completion: A Survey. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023, Macao, China, 19–25 August 2023; pp. 6545–6553. [Google Scholar] [CrossRef]
- Cai, B.; Xiang, Y.; Gao, L.; Zhang, H.; Li, Y.; Li, J. Temporal Knowledge Graph Completion: A Survey. arXiv 2022, arXiv:2201.08236. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Qiu, M.; Pan, S.; Xiong, B.; Liu, H.; Luo, L.; Liu, T.; Hu, Y.; Yin, B.; et al. A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and Prospects. arXiv 2023, arXiv:2308.02457. [Google Scholar] [CrossRef]
- Lai, Y.; Chen, C.; Zheng, Z.; Zhang, Y. Block term decomposition with distinct time granularities for temporal knowledge graph completion. Expert Syst. Appl. 2022, 201, 117036. [Google Scholar] [CrossRef]
- Leblay, J.; Chekol, M.W. Deriving Validity Time in Knowledge Graph. In Proceedings of the Companion of the Web Conference 2018 on the Web Conference 2018, WWW 2018, Lyon, France, 23–27 April 2018; Champin, P., Gandon, F., Lalmas, M., Ipeirotis, P.G., Eds.; ACM: New York, NY, USA, 2018; pp. 1771–1776. [Google Scholar] [CrossRef]
- Han, Z.; Ma, Y.; Wang, Y.; Günnemann, S.; Tresp, V. Graph Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs. In Proceedings of the Conference on Automated Knowledge Base Construction, AKBC 2020, Virtual, 22–24 June 2020. [Google Scholar] [CrossRef]
- Leetaru, K.; Schrodt, P.A. GDELT: Global Data on Events, Location and Tone, 1979–2012. In Proceedings of the International Studies Association Meetings, San Francisco, CA, USA, 3–6 April 2013. [Google Scholar]
- Bordes, A.; Usunier, N.; García-Durán, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data. In Proceedings of the Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013, Lake Tahoe, NV, USA, 5–8 December 2013; Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2013; pp. 2787–2795. [Google Scholar]
- Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Bonet, B., Koenig, S., Eds.; AAAI Press: Washington, DC, USA, 2015; pp. 2181–2187. [Google Scholar] [CrossRef]
- Yang, B.; Yih, W.; He, X.; Gao, J.; Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Bengio, Y., LeCun, Y., Eds.; 2015. Conference Track Proceedings. [Google Scholar]
- Nguyen, D.Q.; Vu, T.; Nguyen, T.D.; Nguyen, D.Q.; Phung, D.Q. A Capsule Network-based Embedding Model for Knowledge Graph Completion and Search Personalization. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Burstein, J., Doran, C., Solorio, T., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; Volume 1, (Long and Short Papers). pp. 2180–2189. [Google Scholar] [CrossRef]
- Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 3856–3866. [Google Scholar]
- Kazemi, S.M.; Poole, D. SimplE Embedding for Link Prediction in Knowledge Graphs. In Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, QC, Canada, 3–8 December 2018; Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2018; pp. 4289–4300. [Google Scholar]
- Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2D Knowledge Graph Embeddings. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, LA, USA, 2–7 February 2018; McIlraith, S.A., Weinberger, K.Q., Eds.; AAAI Press: Washington, DC, USA, 2018; pp. 1811–1818. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Nguyen, D.Q.; Nguyen, T.D.; Nguyen, D.Q.; Phung, D.Q. A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, New Orleans, LA, USA, 1–6 June 2018; Walker, M.A., Ji, H., Stent, A., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; Volume 2, (Short Papers). pp. 327–333. [Google Scholar] [CrossRef]
- Shang, C.; Tang, Y.; Huang, J.; Bi, J.; He, X.; Zhou, B. End-to-End Structure-Aware Convolutional Networks for Knowledge Base Completion. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, HI, USA, 27 January–1 February 2019; AAAI Press: Washington, DC, USA, 2019; pp. 3060–3067. [Google Scholar] [CrossRef]
- García-Durán, A.; Niepert, M. Learning Sequence Encoders for Temporal Knowledge Graph Completion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 4816–4821. [Google Scholar]
- Chen, X.; Jia, S.; Ding, L.; Xiang, Y. Reasoning over temporal knowledge graph with temporal consistency constraints. J. Intell. Fuzzy Syst. 2021, 40, 11941–11950. [Google Scholar] [CrossRef]
- Liu, Y.; Hua, W.; Xin, K.; Zhou, X. Context-Aware Temporal Knowledge Graph Embedding. In Proceedings of the Web Information Systems Engineering—WISE 2019—20th International Conference, Hong Kong, China, 26–30 November 2019; Cheng, R., Mamoulis, N., Sun, Y., Huang, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. Proceedings, Lecture Notes in Computer Science. Volume 11881, pp. 583–598. [Google Scholar] [CrossRef]
- He, M.; Zhu, L.; Bai, L. ConvTKG: A query-aware convolutional neural network-based embedding model for temporal knowledge graph completion. Neurocomputing 2024, 588, 127680. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zhang, B.; Ren, H. Each Snapshot to Each Space: Space Adaptation for Temporal Knowledge Graph Completion. In Proceedings of the Semantic Web—ISWC 2022—21st International Semantic Web Conference, Virtual Event, 23–27 October 2022; Sattler, U., Hogan, A., Keet, C.M., Presutti, V., Almeida, J.P.A., Takeda, H., Monnin, P., Pirrò, G., d’Amato, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. Proceedings, Lecture Notes in Computer Science. Volume 13489, pp. 248–266. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zhang, B.; Huang, F.; Chen, X.; Lu, M.; Ma, S. SANe: Space adaptation network for temporal knowledge graph completion. Inf. Sci. 2024, 667, 120430. [Google Scholar] [CrossRef]
- Fu, G.; Meng, Z.; Han, Z.; Ding, Z.; Ma, Y.; Schubert, M.; Tresp, V.; Wattenhofer, R. TempCaps: A Capsule Network-based Embedding Model for Temporal Knowledge Graph Completion. In Proceedings of the Sixth Workshop on Structured Prediction for NLP, SPNLP@ACL 2022, Dublin, Ireland, 27 May 2022; Vlachos, A., Agrawal, P., Martins, A.F.T., Lampouras, G., Lyu, C., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp. 22–31. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, X.; Li, Z.; Feng, J.; Zheng, X.; Wu, B. BiQCap: A Biquaternion and Capsule Network-Based Embedding Model for Temporal Knowledge Graph Completion. In Proceedings of the Database Systems for Advanced Applications—28th International Conference, DASFAA 2023, Tianjin, China, 17–20 April 2023; Wang, X., Sapino, M.L., Han, W., Abbadi, A.E., Dobbie, G., Feng, Z., Shao, Y., Yin, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2023. Proceedings, Part II. Volume 13944, Lecture Notes in Computer Science. pp. 673–688. [Google Scholar] [CrossRef]
- Bai, L.; Ma, X.; Meng, X.; Ren, X.; Ke, Y. RoAN: A relation-oriented attention network for temporal knowledge graph completion. Eng. Appl. Artif. Intell. 2023, 123, 106308. [Google Scholar] [CrossRef]
- Ren, X.; Bai, L.; Xiao, Q.; Meng, X. Hierarchical Self-Attention Embedding for Temporal Knowledge Graph Completion. In Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April–4 May 2023; Ding, Y., Tang, J., Sequeda, J.F., Aroyo, L., Castillo, C., Houben, G., Eds.; ACM: Times Square, NY, USA, 2023; pp. 2539–2547. [Google Scholar] [CrossRef]
- Jung, J.; Jung, J.; Kang, U. Learning to walk across time for interpretable temporal knowledge graph completion. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Virtual Event, Singapore, 14–18 August 2021; pp. 786–795. [Google Scholar]
- Wang, Y.; Li, L.; Jian, M.; Zhang, Y.; Ouyang, X. A Novel Semantic-Enhanced Time-Aware Model for Temporal Knowledge Graph Completion. In Proceedings of the Natural Language Processing and Chinese Computing—12th National CCF Conference, NLPCC 2023, Foshan, China, 12–15 October 2023; Liu, F., Duan, N., Xu, Q., Hong, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2023. Proceedings, Part II, Lecture Notes in Computer Science. Volume 14303, pp. 148–160. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Cui, Y.; Ma, S. Hyperbolic Graph Neural Network for Temporal Knowledge Graph Completion. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC/COLING 2024, Torino, Italy, 20–25 May 2024; Calzolari, N., Kan, M., Hoste, V., Lenci, A., Sakti, S., Xue, N., Eds.; ELRA and ICCL: Torino, Italia, 2024; pp. 8474–8486. [Google Scholar]
- Wu, J.; Cao, M.; Cheung, J.C.K.; Hamilton, W.L. TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 16–20 November 2020; Webber, B., Cohn, T., He, Y., Liu, Y., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 5730–5746. [Google Scholar] [CrossRef]
- Peng, C.C.; Shi, X.; Yu, R.; Ma, C.; Wu, L.; Zhang, D. Multi-timescale History Modeling for Temporal Knowledge Graph Completion. In Proceedings of the 18th International Conference on Mobility, Sensing and Networking, MSN 2022, Guangzhou, China, 14–16 December 2022; pp. 477–484. [Google Scholar] [CrossRef]
- Wei, H.; Huang, H.; Zhang, T.; Shi, X.; Jin, H. Enhance Temporal Knowledge Graph Completion via Time-Aware Attention Graph Convolutional Network. In Proceedings of the Machine Learning and Knowledge Discovery in Databases—European Conference, ECML PKDD 2022, Grenoble, France, 19–23 September 2022; Amini, M., Canu, S., Fischer, A., Guns, T., Novak, P.K., Tsoumakas, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. Proceedings, Part II, Lecture Notes in Computer Science. Volume 13714, pp. 122–137. [Google Scholar] [CrossRef]
- Nie, H.; Zhao, X.; Yao, X.; Jiang, Q.; Bi, X.; Ma, Y.; Sun, Y. Temporal-structural importance weighted graph convolutional network for temporal knowledge graph completion. Future Gener. Comput. Syst. 2023, 143, 30–39. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.; Lee, D.; Kim, S. Learning to compensate for lack of information: Extracting latent knowledge for effective temporal knowledge graph completion. Inf. Sci. 2024, 654, 119857. [Google Scholar] [CrossRef]
- Chen, K.; Li, C.; Li, A.; Gao, J.; Ma, S. Focus on Inherent Attributes for Temporal Knowledge Graph Completion. In Proceedings of the International Joint Conference on Neural Networks, IJCNN 2021, Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, C.; Zhu, W. Dynamic Embedding Graph Attention Networks for Temporal Knowledge Graph Completion. In Proceedings of the Knowledge Science, Engineering and Management—15th International Conference, KSEM 2022, Singapore, 6–8 August 2022; Memmi, G., Yang, B., Kong, L., Zhang, T., Qiu, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. Proceedings, Part I, Lecture Notes in Computer Science. Volume 13368, pp. 722–734. [Google Scholar] [CrossRef]
- Hou, X.; Ma, R.; Yan, L.; Ma, Z. T-GAE: A Timespan-aware Graph Attention-based Embedding Model for Temporal Knowledge Graph Completion. Inf. Sci. 2023, 642, 119225. [Google Scholar] [CrossRef]
- Gao, Y.; He, Y.; Kan, Z.; Han, Y.; Qiao, L.; Li, D. Learning Joint Structural and Temporal Contextualized Knowledge Embeddings for Temporal Knowledge Graph Completion. In Proceedings of the Findings of the Association for Computational Linguistics: ACL 2023, Toronto, ON, Canada, 9–14 July 2023; Rogers, A., Boyd-Graber, J.L., Okazaki, N., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2023; pp. 417–430. [Google Scholar] [CrossRef]
- Luo, R.; Gu, T.; Li, H.; Li, J.; Lin, Z.; Li, J.; Yang, Y. Chain of History: Learning and Forecasting with LLMs for Temporal Knowledge Graph Completion. arXiv 2024, arXiv:2401.06072. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Konyk, M.; Vysotska, V.; Goloshchuk, S.; Holoshchuk, R.; Chyrun, S.; Budz, I. Technology of Ukrainian-English Machine Translation Based on Recursive Neural Network as LSTM. In Proceedings of the 7th International Conference on Computational Linguistics and Intelligent Systems, Kharkiv, Ukraine, 20–21 April 2023; pp. 357–370. [Google Scholar]
- Bhaskar, S.; Thasleema, T. LSTM model for visual speech recognition through facial expressions. Multimed. Tools Appl. 2023, 82, 5455–5472. [Google Scholar] [CrossRef]
- Song, P.; Li, P.; Dai, L.; Wang, T.; Chen, Z. Boosting R-CNN: Reweighting R-CNN samples by RPN’s error for underwater object detection. Neurocomputing 2023, 530, 150–164. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, Z.; Fang, Z. An effective CNN and Transformer complementary network for medical image segmentation. Pattern Recognit. 2023, 136, 109228. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Bengio, Y., LeCun, Y., Eds.; 2015. Conference Track Proceedings. [Google Scholar]
- Kang, L.; He, S.; Wang, M.; Long, F.; Su, J. Bilingual attention based neural machine translation. Appl. Intell. 2023, 53, 4302–4315. [Google Scholar] [CrossRef]
- Rekesh, D.; Koluguri, N.R.; Kriman, S.; Majumdar, S.; Noroozi, V.; Huang, H.; Hrinchuk, O.; Puvvada, K.; Kumar, A.; Balam, J.; et al. Fast conformer with linearly scalable attention for efficient speech recognition. In Proceedings of the 2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Taipei, Taiwan, 16–20 December 2023; pp. 1–8. [Google Scholar]
- Goel, R.; Kazemi, S.M.; Brubaker, M.A.; Poupart, P. Diachronic Embedding for Temporal Knowledge Graph Completion. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February 2020; AAAI Press: Washington, DC, USA, 2020; pp. 3988–3995. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R., Eds.; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 5998–6008. [Google Scholar]
- Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw. 2008, 20, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, Z.; Dou, Y.; Ma, J.; Yu, P.S. Consisrec: Enhancing gnn for social recommendation via consistent neighbor aggregation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 11–15 July 2021; pp. 2141–2145. [Google Scholar]
- Xue, J.; Jiang, N.; Liang, S.; Pang, Q.; Yabe, T.; Ukkusuri, S.V.; Ma, J. Quantifying the spatial homogeneity of urban road networks via graph neural networks. Nat. Mach. Intell. 2022, 4, 246–257. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Y.; Pan, S.; Zhang, M.; Jin, D.; Yu, P.S. Graph Neural Networks for Graphs with Heterophily: A Survey. arXiv 2022, arXiv:2202.07082. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017. Conference Track Proceedings, 2017. [Google Scholar]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Han, X.; Zhang, Z.; Ding, N.; Gu, Y.; Liu, X.; Huo, Y.; Qiu, J.; Yao, Y.; Zhang, A.; Zhang, L.; et al. Pre-trained models: Past, present and future. AI Open 2021, 2, 225–250. [Google Scholar] [CrossRef]
- Bhargava, P.; Ng, V. Commonsense Knowledge Reasoning and Generation with Pre-trained Language Models: A Survey. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022, Virtual Event, 22 February–1 March 2022; AAAI Press: Washington, DC, USA, 2022; pp. 12317–12325. [Google Scholar] [CrossRef]
- Min, B.; Ross, H.; Sulem, E.; Veyseh, A.P.B.; Nguyen, T.H.; Sainz, O.; Agirre, E.; Heintz, I.; Roth, D. Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey. ACM Comput. Surv. 2024, 56, 30:1–30:40. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019; Burstein, J., Doran, C., Solorio, T., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; Volume 1, (Long and Short Papers). pp. 4171–4186. [Google Scholar] [CrossRef]
- Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. arXiv 2021, arXiv:2106.09685. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, M.; Zhang, H.; Zhang, H. FTMF: Few-shot temporal knowledge graph completion based on meta-optimization and fault-tolerant mechanism. World Wide Web (WWW) 2023, 26, 1243–1270. [Google Scholar] [CrossRef]
- Gong, X.; Qin, J.; Chai, H.; Ding, Y.; Jia, Y.; Liao, Q. Temporal-Relational Matching Network for Few-Shot Temporal Knowledge Graph Completion. In Proceedings of the Database Systems for Advanced Applications—28th International Conference, DASFAA 2023, Tianjin, China, 17–20 April 2023; Wang, X., Sapino, M.L., Han, W., Abbadi, A.E., Dobbie, G., Feng, Z., Shao, Y., Yin, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2023. Proceedings, Part II, Lecture Notes in Computer Science. Volume 13944, pp. 768–783. [Google Scholar] [CrossRef]
- Ma, H.; Wang, D.Z. A Survey On Few-shot Knowledge Graph Completion with Structural and Commonsense Knowledge. arXiv 2023, arXiv:2301.01172. [Google Scholar] [CrossRef]
- Wan, G.; Zhou, Z.; Zheng, Z.; Du, B. Sub-Entity Embedding for inductive spatio-temporal knowledge graph completion. Future Gener. Comput. Syst. 2023, 148, 240–249. [Google Scholar] [CrossRef]
- Li, X.; Xiong, H.; Li, X.; Wu, X.; Zhang, X.; Liu, J.; Bian, J.; Dou, D. Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond. Knowl. Inf. Syst. 2022, 64, 3197–3234. [Google Scholar] [CrossRef]
- Wani, N.A.; Kumar, R.; Bedi, J. DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence. Comput. Methods Programs Biomed. 2024, 243, 107879. [Google Scholar] [CrossRef] [PubMed]
Dataset | #Entities | #Relations | #Timestamps | #Train | #Validation | #Test | Timestamps |
---|---|---|---|---|---|---|---|
ICEWS14 | 6869 | 230 | 365 | 72,826 | 8941 | 8963 | time point |
ICEWS05-15 | 10,094 | 251 | 4017 | 368,962 | 46,275 | 46,092 | time point |
ICEWS18 | 23,033 | 256 | 304 | 373,018 | 45,995 | 49,545 | time point |
GDELT | 500 | 20 | 366 | 2,735,685 | 341,961 | 341,961 | time point |
YAGO11k | 10,623 | 10 | 70 | 16,406 | 2050 | 2051 | time interval |
YAGO15k | 15,403 | 34 | 198 | 29,381 | 3635 | 3685 | time interval |
Wikidata12k | 12,554 | 24 | 81 | 32,497 | 4062 | 4062 | time interval |
WIKI | 12,554 | 24 | 232 | 539,286 | 67,538 | 63,110 | time interval |
Category | TKGC Method | MRR | MR | Hits@10 | Hits@1 |
---|---|---|---|---|---|
LSTM-based methods | TA-TransE [27] ⋆ | 0.299 | 79 | 66.8 | 9.6 |
TA-DISTMULT [27] ⋆ | 0.474 | 98 | 72.8 | 34.6 | |
TA-TransR [28] | - | - | - | - | |
CNN-based methods | CATKGC [29] | - | - | - | - |
ConvTKG [30] ⋄ | 0.740 | - | 86.2 | 67.4 | |
SANe [31] * | 0.683 | - | 82.3 | 60.5 | |
SANe+ [32] * | 0.686 | - | 82.6 | 60.8 | |
CapsNet-based methods | TempCaps [33] * | 0.521 | - | 70.5 | 42.3 |
BiQCap [34] † | 0.691 | - | 83.7 | 62.1 | |
Attention-based methods | RoAN [35] ⋆ | 0.599 | - | 82.3 | 47.9 |
HSAE [36] † | 0.864 | - | 94.1 | 81.7 | |
GNN-based methods | TGAP [37] † | 0.670 | - | 84.5 | 56.8 |
STRGNN [38] ⋆ | 0.781 | - | 85.1 | 66.7 | |
HyGNet [39] * | 0.693 | - | 83.7 | 61.2 | |
GCN-based methods | TeMP [40] ⋆ | 0.691 | - | 91.7 | 56.6 |
MtGCN [41] | - | - | - | - | |
TAGCN [42] ⋆ | 0.641 | - | 81.2 | 55.3 | |
TAL-TKGC [43] ⋆ | 0.354 | - | 69.2 | 22.6 | |
THOR [44] † | 0.799 | - | 88.2 | 75.0 | |
GAN-based methods | IAGAT [45] * | 0.615 | - | 80.8 | 50.3 |
DEGAT [46] † | 0.777 | 241 | 87.1 | 72.4 | |
T-GAE [47] * | 0.696 | - | 86.2 | - | |
Language model-based methods | SToKE [48] * | 0.712 | - | 88.5 | 60.5 |
Llama-2-7b-CoH [49] * | - | - | 69.9 | 38.6 | |
Vicuna-7b-CoH [49] * | - | - | 70.7 | 39.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, N.; Yao, C. A Brief Survey on Deep Learning-Based Temporal Knowledge Graph Completion. Appl. Sci. 2024, 14, 8871. https://doi.org/10.3390/app14198871
Jia N, Yao C. A Brief Survey on Deep Learning-Based Temporal Knowledge Graph Completion. Applied Sciences. 2024; 14(19):8871. https://doi.org/10.3390/app14198871
Chicago/Turabian StyleJia, Ningning, and Cuiyou Yao. 2024. "A Brief Survey on Deep Learning-Based Temporal Knowledge Graph Completion" Applied Sciences 14, no. 19: 8871. https://doi.org/10.3390/app14198871
APA StyleJia, N., & Yao, C. (2024). A Brief Survey on Deep Learning-Based Temporal Knowledge Graph Completion. Applied Sciences, 14(19), 8871. https://doi.org/10.3390/app14198871