Remote Sensing Image Dehazing via Dual-View Knowledge Transfer
Abstract
:1. Introduction
- A Dual-View Knowledge Transfer (DVKT) framework is proposed for effective RSID: to the extent of our knowledge, the proposed DVKT framework is the first work to concentrate on transferring shared knowledge from natural scene dehazing models to RSID models and learning remote-sensing scene-specific knowledge for lightweight models.
- Two complementary knowledge transfer modules, Intra-KT and Inter-KT, are integrated to comprehensively transfer the structured knowledge from well-trained natural scene-dehazing models to lightweight RSID models.
- Extensive experiments on benchmark datasets demonstrate the effectiveness of the proposed DVKT framework. In particular, the proposed DVKT framework achieves satisfactory dehazing results while significantly improving processing speed.
2. Materials and Methods
2.1. Feature Extraction
2.2. Intra-Layer Knowledge Transfer
2.3. Inter-Layer Knowledge Transfer
2.4. Loss Function
3. Results and Discussion
3.1. Datasets
- SateHaze1k: The SateHaze1k dataset [40] consists of 1200 image pairs, divided into three sub-datasets with different haze densities. The SateHaze1k-thin sub-dataset contains images with thin haze, the SateHaze1k-moderate sub-dataset contains images with moderate haze, and the SateHaze1k-thick sub-dataset contains images with thick haze. The images in each sub-dataset are split among three categories: 320 for training, 35 for validation, and 45 for testing.
- RS-Haze: The RS-Haze dataset [28] is a comprehensive and challenging dataset designed for image dehazing tasks, featuring 51,300 image pairs. Among these, 51,030 pairs are designated for training purposes, while the remaining 270 pairs are reserved for testing. It encompasses various scenarios and levels of haze density, such as urban landscapes, forests, beaches, and mountain regions.
3.2. Experimental Details and Evaluation Criteria
3.3. Comparison with Other Image Dehazing Methods
3.3.1. Quantitative Evaluations
3.3.2. Qualitative Evaluations
3.4. Ablation Study
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Xiong, S. Remote sensing image dehazing using adaptive region-based diffusion models. IEEE Geosci. Remote Sens. Lett. 2023, 20, 8001805. [Google Scholar] [CrossRef]
- Su, H.; Liu, L.; Jeon, G.; Wang, Z.; Guo, T.; Gao, M. Remote Sensing Image Dehazing Based on Dual Attention Parallelism and Frequency Domain Selection Network. IEEE Trans. Consum. Electron. 2024; early access. [Google Scholar]
- Zheng, Y.; Su, J.; Zhang, S.; Tao, M.; Wang, L. Dehaze-TGGAN: Transformer-Guide Generative Adversarial Networks with Spatial-Spectrum Attention for Unpaired Remote Sensing Dehazing. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5634320. [Google Scholar] [CrossRef]
- Kulkarni, A.; Murala, S. Aerial image dehazing with attentive deformable transformers. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 6305–6314. [Google Scholar]
- Wang, Y.; Yan, X.; Wang, F.L.; Xie, H.; Yang, W.; Zhang, X.P.; Qin, J.; Wei, M. Ucl-dehaze: Towards real-world image dehazing via unsupervised contrastive learning. IEEE Trans. Image Process. 2024, 33, 1361–1374. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhan, J.; He, S.; Dong, J.; Du, Y. Curricular contrastive regularization for physics-aware single image dehazing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 5785–5794. [Google Scholar]
- Guo, F.; Yang, J.; Liu, Z.; Tang, J. Haze removal for single image: A comprehensive review. Neurocomputing 2023, 537, 85–109. [Google Scholar] [CrossRef]
- Berman, D.; Avidan, S. Non-local image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1674–1682. [Google Scholar]
- Xu, L.; Zhao, D.; Yan, Y.; Kwong, S.; Chen, J.; Duan, L.Y. IDeRs: Iterative dehazing method for single remote sensing image. Inf. Sci. 2019, 489, 50–62. [Google Scholar] [CrossRef]
- Liang, S.; Gao, T.; Chen, T.; Cheng, P. A Remote Sensing Image Dehazing Method Based on Heterogeneous Priors. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5619513. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [PubMed]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar] [CrossRef]
- Zhu, Q.; Mai, J.; Shao, L. A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar]
- Fattal, R. Dehazing using color-lines. ACM Trans. Graph. (TOG) 2014, 34, 1–14. [Google Scholar] [CrossRef]
- Zheng, Z.; Ren, W.; Cao, X.; Hu, X.; Wang, T.; Song, F.; Jia, X. Ultra-high-definition image dehazing via multi-guided bilateral learning. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 16180–16189. [Google Scholar]
- Wang, Y.; Xiong, J.; Yan, X.; Wei, M. Uscformer: Unified transformer with semantically contrastive learning for image dehazing. IEEE Trans. Intell. Transp. Syst. 2023, 24, 11321–11333. [Google Scholar] [CrossRef]
- Li, C.; Yu, H.; Zhou, S.; Liu, Z.; Guo, Y.; Yin, X.; Zhang, W. Efficient dehazing method for outdoor and remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4516–4528. [Google Scholar] [CrossRef]
- Tong, L.; Liu, Y.; Li, W.; Chen, L.; Chen, E. Haze-Aware Attention Network for Single-Image Dehazing. Appl. Sci. 2024, 14, 5391. [Google Scholar] [CrossRef]
- Chi, K.; Yuan, Y.; Wang, Q. Trinity-Net: Gradient-guided Swin transformer-based remote sensing image dehazing and beyond. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4702914. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Shyam, P.; Yoo, H. Data Efficient Single Image Dehazing via Adversarial Auto-Augmentation and Extended Atmospheric Scattering Model. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Paris, France, 2–6 October 2023; pp. 227–237. [Google Scholar]
- Leng, C.; Liu, G. IFE-Net: An Integrated Feature Extraction Network for Single-Image Dehazing. Appl. Sci. 2023, 13, 12236. [Google Scholar] [CrossRef]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11908–11915. [Google Scholar]
- Guo, C.; Yan, Q.; Anwar, S.; Cong, R.; Ren, W.; Li, C. Image dehazing transformer with transmission-aware 3d position embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5812–5820. [Google Scholar]
- Huang, P.; Zhao, L.; Jiang, R.; Wang, T.; Zhang, X. Self-filtering image dehazing with self-supporting module. Neurocomputing 2021, 432, 57–69. [Google Scholar] [CrossRef]
- Wang, C.; Shen, H.Z.; Fan, F.; Shao, M.W.; Yang, C.S.; Luo, J.C.; Deng, L.J. EAA-Net: A novel edge assisted attention network for single image dehazing. Knowl.-Based Syst. 2021, 228, 107279. [Google Scholar] [CrossRef]
- Sun, H.; Luo, Z.; Ren, D.; Hu, W.; Du, B.; Yang, W.; Wan, J.; Zhang, L. Partial siamese with multiscale bi-codec networks for remote sensing image haze removal. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4106516. [Google Scholar] [CrossRef]
- Song, Y.; He, Z.; Qian, H.; Du, X. Vision transformers for single image dehazing. IEEE Trans. Image Process. 2023, 32, 1927–1941. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X. A coarse-to-fine two-stage attentive network for haze removal of remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1751–1755. [Google Scholar] [CrossRef]
- Song, T.; Fan, S.; Li, P.; Jin, J.; Jin, G.; Fan, L. Learning an effective transformer for remote sensing satellite image dehazing. IEEE Geosci. Remote Sens. Lett. 2023, 20, 8002305. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S. Dense haze removal based on dynamic collaborative inference learning for remote sensing images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5631016. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Zhan, C.; Li, J. Frequency-Oriented Transformer for Remote Sensing Image Dehazing. Sensors 2024, 24, 3972. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Su, J.; Zhang, S.; Tao, M.; Wang, L. Dehaze-AGGAN: Unpaired remote sensing image dehazing using enhanced attention-guide generative adversarial networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5630413. [Google Scholar] [CrossRef]
- Yu, M.; Xu, S.; Sun, H.; Zheng, Y.; Yang, W. Hierarchical slice interaction and multi-layer cooperative decoding networks for remote sensing image dehazing. Image Vis. Comput. 2024, 148, 105129. [Google Scholar] [CrossRef]
- Ayazoglu, M. Extremely lightweight quantization robust real-time single-image super resolution for mobile devices. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2472–2479. [Google Scholar]
- Xue, L.; Wang, X.; Wang, Z.; Li, G.; Song, H.; Song, Z. A Lightweight Patch-Level Change Detection Network Based on Multi-layer Feature Compression and Sensitivity-Guided Network Pruning. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5624219. [Google Scholar] [CrossRef]
- Yang, L.; Cao, J.; Wang, H.; Dong, S.; Ning, H. Hierarchical Semantic-Guided Contextual Structure-Aware Network for Spectral Satellite Image Dehazing. Remote Sens. 2024, 16, 1525. [Google Scholar] [CrossRef]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 2018, 28, 492–505. [Google Scholar] [CrossRef]
- Beyer, L.; Zhai, X.; Royer, A.; Markeeva, L.; Anil, R.; Kolesnikov, A. Knowledge distillation: A good teacher is patient and consistent. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 10925–10934. [Google Scholar]
- Huang, B.; Zhi, L.; Yang, C.; Sun, F.; Song, Y. Single satellite optical imagery dehazing using SAR image prior based on conditional generative adversarial networks. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1806–1813. [Google Scholar]
- Wen, Y.; Gao, T.; Zhang, J.; Li, Z.; Chen, T. Encoder-free multi-axis physics-aware fusion network for remote sensing image dehazing. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4705915. [Google Scholar] [CrossRef]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Kendall, A.; Gal, Y.; Cipolla, R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7482–7491. [Google Scholar]
- Bui, T.M.; Kim, W. Single image dehazing using color ellipsoid prior. IEEE Trans. Image Process. 2017, 27, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Ling, P.; Chen, H.; Tan, X.; Jin, Y.; Chen, E. Single Image Dehazing Using Saturation Line Prior. IEEE Trans. Image Process. 2023, 32, 3238–3253. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. Aod-net: All-in-one dehazing network. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4770–4778. [Google Scholar]
- Zhao, D.; Xu, L.; Yan, Y.; Chen, J.; Duan, L.Y. Multi-scale optimal fusion model for single image dehazing. Signal Process. Image Commun. 2019, 74, 253–265. [Google Scholar] [CrossRef]
- Ullah, H.; Muhammad, K.; Irfan, M.; Anwar, S.; Sajjad, M.; Imran, A.S.; de Albuquerque, V.H.C. Light-DehazeNet: A novel lightweight CNN architecture for single image dehazing. IEEE Trans. Image Process. 2021, 30, 8968–8982. [Google Scholar] [CrossRef]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H. Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5728–5739. [Google Scholar]
- Huang, Y.; Chen, X. Single remote sensing image dehazing using a dual-step cascaded residual dense network. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3852–3856. [Google Scholar]
Methods | Thin Haze | Moderate Haze | Thick Haze | Mixed Haze | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | |
DCP [11] | 19.1183 | 0.8518 | 0.1451 | 19.8384 | 0.8812 | 0.1198 | 16.7930 | 0.7701 | 0.2103 | 18.5833 | 0.8344 | 0.1602 |
CEP [44] | 13.5997 | 0.7222 | 0.3201 | 14.2122 | 0.7270 | 0.2294 | 16.0824 | 0.7762 | 0.2097 | 14.6950 | 0.7512 | 0.2703 |
MOF [47] | 15.3891 | 0.7291 | 0.3002 | 14.7418 | 0.6256 | 0.3301 | 16.2495 | 0.6767 | 0.3303 | 15.5146 | 0.6859 | 0.3108 |
AOD-Net [46] | 19.0548 | 0.7777 | 0.1903 | 19.4211 | 0.7015 | 0.2401 | 16.4672 | 0.7123 | 0.2702 | 17.4859 | 0.6332 | 0.3382 |
Light-DehazeNet [48] | 18.4868 | 0.8658 | 0.1299 | 18.3918 | 0.8825 | 0.1002 | 16.7662 | 0.7697 | 0.2253 | 17.8132 | 0.8352 | 0.1499 |
FFA-Net [23] | 20.1410 | 0.8582 | 0.1149 | 22.5586 | 0.9132 | 0.0657 | 19.1255 | 0.7976 | 0.1992 | 21.2873 | 0.8663 | 0.0998 |
Restormer [49] | 20.9829 | 0.8686 | 0.1049 | 23.1574 | 0.9036 | 0.0598 | 19.6984 | 0.7739 | 0.2137 | 20.7892 | 0.8379 | 0.1479 |
DehazeFormer [28] | 21.9274 | 0.8843 | 0.0918 | 24.4407 | 0.9268 | 0.0579 | 20.2133 | 0.8049 | 0.1635 | 22.0066 | 0.8659 | 0.1099 |
SLP [45] | 16.4162 | 0.7428 | 0.2762 | 18.6182 | 0.7830 | 0.1837 | 16.5071 | 0.7659 | 0.2250 | 17.2483 | 0.7706 | 0.1852 |
Trinity-Net [19] | 19.3708 | 0.7816 | 0.1761 | 19.6918 | 0.7062 | 0.2252 | 17.1281 | 0.7723 | 0.2116 | 17.6508 | 0.7864 | 0.1940 |
DCRD-Net [50] | 20.8473 | 0.8767 | 0.0978 | 23.3119 | 0.9225 | 0.0589 | 19.7250 | 0.8121 | 0.1378 | 21.7468 | 0.8812 | 0.0849 |
FCTF-Net [29] | 18.3262 | 0.8369 | 0.1362 | 20.9057 | 0.8553 | 0.1295 | 17.2551 | 0.6922 | 0.2897 | 19.5883 | 0.8434 | 0.1498 |
SCSNet (Teacher Network) [37] | 26.1460 | 0.9415 | 0.0583 | 28.3501 | 0.9566 | 0.0398 | 24.6542 | 0.9015 | 0.0649 | 25.1759 | 0.9223 | 0.0519 |
DVKT | 24.7284 | 0.9183 | 0.0618 | 27.0462 | 0.9417 | 0.0579 | 23.3136 | 0.8862 | 0.0919 | 23.9271 | 0.9105 | 0.0609 |
Methods | RS-Haze | RSID | ||||
---|---|---|---|---|---|---|
PSNR | SSIM | LPIPS | PSNR | SSIM | LPIPS | |
DCP [11] | 18.1003 | 0.6704 | 0.2801 | 17.3256 | 0.7927 | 0.1699 |
CEP [44] | 15.9097 | 0.5772 | 0.3502 | 14.2375 | 0.7034 | 0.2192 |
MOF [47] | 16.1608 | 0.5628 | 0.3603 | 12.9052 | 0.6485 | 0.2901 |
AOD-Net [46] | 23.9677 | 0.7207 | 0.1902 | 18.7037 | 0.7424 | 0.1781 |
Light-DehazeNet [48] | 25.5965 | 0.8209 | 0.1203 | 17.9279 | 0.8414 | 0.1099 |
FFA-Net [23] | 29.1932 | 0.8846 | 0.0898 | 21.2876 | 0.9042 | 0.0749 |
Restormer [49] | 25.6700 | 0.7563 | 0.2001 | 11.7240 | 0.5971 | 0.3203 |
DehazeFormer [28] | 29.3419 | 0.8730 | 0.0798 | 22.6859 | 0.9118 | 0.0649 |
SLP [45] | 17.3805 | 0.6527 | 0.2882 | 16.7260 | 0.7751 | 0.1735 |
Trinity-Net [19] | 29.7082 | 0.8973 | 0.0714 | 23.5273 | 0.9207 | 0.0562 |
DCRD-Net [50] | 29.6780 | 0.8878 | 0.0749 | 22.1643 | 0.8926 | 0.0898 |
FCTF-Net [29] | 29.6240 | 0.8958 | 0.0698 | 20.2556 | 0.8397 | 0.1203 |
SCSNet (Teacher Network) [37] | 32.2504 | 0.9271 | 0.0499 | 25.3821 | 0.9585 | 0.0398 |
DVKT | 31.4227 | 0.9135 | 0.0541 | 24.1082 | 0.9426 | 0.0449 |
Methods | Params | FLOPS | Time | PSNR | SSIM | LPIPS |
---|---|---|---|---|---|---|
DCP [11] | — | — | 0.2604 | 18.5833 | 0.8344 | 0.1602 |
AOD-Net [46] | 0.01 | 0.15 | 0.0452 | 17.4859 | 0.6332 | 0.2498 |
Light-DehazeNet [48] | 0.03 | 1.97 | 0.0571 | 17.8132 | 0.8352 | 0.1199 |
FFA-Net [23] | 4.45 | 287.53 | 0.4465 | 21.2873 | 0.8663 | 0.0898 |
Restormer [49] | 26.13 | 141.17 | 0.3157 | 20.7892 | 0.8379 | 0.0749 |
DehazeFormer [28] | 9.68 | 89.85 | 0.2438 | 22.0066 | 0.8659 | 0.0599 |
Trinity-Net [19] | 9.82 | 90.17 | 0.2615 | 17.6508 | 0.7864 | 0.1940 |
DCRD-Net [50] | 0.04 | 14.92 | 0.1827 | 21.7468 | 0.8812 | 0.0549 |
FCTF-Net [29] | 0.16 | 10.04 | 0.1574 | 19.5883 | 0.8434 | 0.1098 |
SCSNet (Teacher Network) [37] | 1.53 | 10.79 | 0.1713 | 25.1759 | 0.9223 | 0.0419 |
DVKT | 0.06 | 0.44 | 0.0225 | 23.9271 | 0.9105 | 0.0509 |
CPR | Params | FLOPS | PSNR | SSIM | LPIPS |
---|---|---|---|---|---|
1 | 1.53 | 10.79 | 25.1759 | 0.9223 | 0.0386 |
1/2 | 0.39 | 2.71 | 24.6717 | 0.9184 | 0.0407 |
1/3 | 0.18 | 1.20 | 24.3804 | 0.9162 | 0.0424 |
1/4 | 0.10 | 0.68 | 24.1163 | 0.9140 | 0.0441 |
1/5 | 0.06 | 0.44 | 23.9271 | 0.9105 | 0.0509 |
Transfer Settings | PSNR | SSIM | LPIPS |
---|---|---|---|
W/T Transfer | 19.8206 | 0.8625 | 0.1357 |
Only Intra-KT | 22.3718 | 0.9051 | 0.0521 |
Only Inter-KT | 21.5281 | 0.8937 | 0.0768 |
Intra-KT + Inter-KT | 23.9271 | 0.9105 | 0.0509 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Cao, J.; Bian, H.; Qu, R.; Guo, H.; Ning, H. Remote Sensing Image Dehazing via Dual-View Knowledge Transfer. Appl. Sci. 2024, 14, 8633. https://doi.org/10.3390/app14198633
Yang L, Cao J, Bian H, Qu R, Guo H, Ning H. Remote Sensing Image Dehazing via Dual-View Knowledge Transfer. Applied Sciences. 2024; 14(19):8633. https://doi.org/10.3390/app14198633
Chicago/Turabian StyleYang, Lei, Jianzhong Cao, He Bian, Rui Qu, Huinan Guo, and Hailong Ning. 2024. "Remote Sensing Image Dehazing via Dual-View Knowledge Transfer" Applied Sciences 14, no. 19: 8633. https://doi.org/10.3390/app14198633
APA StyleYang, L., Cao, J., Bian, H., Qu, R., Guo, H., & Ning, H. (2024). Remote Sensing Image Dehazing via Dual-View Knowledge Transfer. Applied Sciences, 14(19), 8633. https://doi.org/10.3390/app14198633