Electronic Fourier–Galois Spectrum Analyzer for the Field GF(31)
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Simplifying the Representation of Basis Functions
3.2. Algorithm of the Fourier–Galois Spectrum Analyzer
4. Spectrum Analyzer in the Galois Field GF(31)
4.1. Scheme of Adders and Multipliers by 5 Modulo Number 31
4.2. Test Results of the Proposed Scheme
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, L.; Zhang, W.; Chang, Y.; Wang, H.; Liu, Y. Blind Recognition of Reed-Solomon Codes Based on Galois Field Fourier Transform and Reliability Verification. IEEE Commun. Lett. 2023, 27, 2137–2141. [Google Scholar] [CrossRef]
- Chernov, V.M. Calculation of Fourier-Galois transforms in reduced binary number systems. Comput. Opt. 2018, 42, 495–500. [Google Scholar] [CrossRef]
- Girisankar, S.B.; Nasseri, M.; Priscilla, J.; Lin, S.; Akella, V. Multiplier-Free Implementation of Galois Field Fourier Transform on a FPGA. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1815–1819. [Google Scholar] [CrossRef]
- Hazzazi, M.M.; Rehman, H.U.; Shah, T.; Younas, H. Asymmetric Key Cryptosystem for Image Encryption by Elliptic Curve over Galois Field GF (2n). Comput. Mater. Contin. 2023, 76, 2034–2060. [Google Scholar]
- Garcia, L.; Vazquez, E.; Sanchez, G.; Avalos, J.-G.; Sanchez, G. An ultra-compact and high-speed FFT-based large-integer multiplier for fully homomorphic encryption using a dual spike-based arithmetic circuit over GF(p). Neurocomputing 2022, 507, 54–66. [Google Scholar] [CrossRef]
- Alaeddine, H.; Charafeddine, K.; Vikhrov, M. A new efficient method of adaptive filter using the Galois field arithmetic. IOP Conf. Ser. Mater. Sci. Eng. 2019, 663, 012060. [Google Scholar] [CrossRef]
- Liu, P.; Pan, Z.; Lei, J. Parameter Identification of Reed-Solomon Codes Based on Probability Statistics and Galois Field Fourier Transform. IEEE Access 2019, 7, 33619–33630. [Google Scholar] [CrossRef]
- Arulkumar, V.; Jaya Prakash, S.; Subramanian, E.K.; Thangadurai, N. An Intelligent Face Detection by Corner Detection using Special Morphological Masking System and Fast Algorithm. In Proceedings of the 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 7–9 October 2021; pp. 1556–1561. [Google Scholar] [CrossRef]
- Bah, S.M.; Ming, F. An improved face recognition algorithm and its application in attendance management system. Array 2020, 5, 100014. [Google Scholar] [CrossRef]
- Alom, M.Z.; Hasan, M.; Yakopcic, C.; Taha, T.M.; Asari, V.K. Inception recurrent convolutional neural network for object recognition. Mach. Vis. Appl. 2021, 32, 28. [Google Scholar] [CrossRef]
- Musa, A.; Pipicelli, M.; Spano, M.; Tufano, F.; De Nola, F.; Di Blasio, G.; Gimelli, A.; Misul, D.A.; Toscano, G. A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems. Energies 2021, 14, 7974. [Google Scholar] [CrossRef]
- Suleimenov, I.E.; Vitulyova, Y.S.; Shaltykova, D.B.; Matrassulova, D.K.; Bakirov, A.S. Pattern recognition methods as a base of development of new instruments for investigations in physical chemistry. In Proceedings of the 2022 European Symposium on Software Engineering, Rome, Italy, 27–29 October 2022; pp. 127–132. [Google Scholar]
- Suleimenov, I.E.; Budtova, T.V.; Bekturov, E.A. The kinetics of swelling of highly swelling hydrogels under the coexistence of two phases. Polym. Sci. Ser. A 2002, 44, 1010–1015. [Google Scholar]
- Budtova, T.; Suleimenov, I.; Frenkel, S. Electrokinetics of the contraction of a polyelectrolyte hydrogel under the influence of constant electric current. Polym. Gels Netw. 1995, 3, 387–393. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Buenger, D.; Topuz, F.; Groll, J. Hydrogels in sensing applications. Prog. Polym. Sci. 2012, 37, 1678–1719. [Google Scholar] [CrossRef]
- Lin, G.; Chang, S.; Kuo, C.H.; Magda, J.; Solzbacher, F. Free swelling and confined smart hydrogels for applications in chemomechanical sensors for physiological monitoring. Sens. Actuators B Chem. 2009, 136, 186–195. [Google Scholar] [CrossRef]
- Li, Y.; Han, Y.; Li, H.; Niu, X.; Zhang, D.; Wang, K. Antimicrobial hydrogels: Potential materials for medical application. Small 2024, 20, 2304047. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, A.; Jose, V.K.; Lee, J.M. Hydrogels for medical and environmental applications. Small Methods 2020, 4, 1900735. [Google Scholar] [CrossRef]
- Budtova, T.; Suleimenov, I. Physical principles of using polyelectrolyte hydrogels for purifying and enrichment technologies. J. Appl. Polym. Sci. 1995, 57, 1653–1658. [Google Scholar] [CrossRef]
- Suleimenov, I.; Egemberdieva, Z.; Bakirov, A.; Baipakbayeva, S.; Kopishev, E.; Mun, G. Efficiency Problem of renewable energetics systems in the context of «smart house» concept. E3S Web Conf. 2020, 164, 13002. [Google Scholar] [CrossRef]
- Nakan, U.; Mun, G.A.; Rakhmetullayeva, R.K.; Tolkyn, B.; Bieerkehazhi, S.; Yeligbayeva, G.Z.; Negim, E.S. Thermosensitive N-isopropylacrylamide-CO-2-hydroxyethyl acrylate hydrogels interactions with poly (acrylic acid) and surfactants. Polym. Adv. Technol. 2021, 32, 2676–2681. [Google Scholar] [CrossRef]
- Ningrum, E.O.; Gotoh, T.; Ciptonugroho, W.; Karisma, A.D.; Agustiani, E.; Safitri, Z.M.; Dzaky, M.A. Novel thermosensitive-co-zwitterionic sulfobetaine gels for metal ion removal: Synthesis and characterization. Gels 2021, 7, 273. [Google Scholar] [CrossRef]
- Saad, S.M.; Policova, Z.; Neumann, A.W. Design and accuracy of pendant drop methods for surface tension measurement. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 442–452. [Google Scholar] [CrossRef]
- Qazi, M.J.; Schlegel, S.J.; Backus, E.H.; Bonn, M.; Bonn, D.; Shahidzadeh, N. Dynamic surface tension of surfactants in the presence of high salt concentrations. Langmuir 2020, 36, 7956–7964. [Google Scholar] [CrossRef] [PubMed]
- Vitulyova, E.S.; Matrassulova, D.K.; Suleimenov, I.E. New application of non-binary Galois fields Fourier transform: Digital analog of convolution theorem. Indones. J. Electr. Eng. Comput. Sci. 2021, 23, 1718–1726. [Google Scholar] [CrossRef]
- Moldakhan, I.; Matrassulova, D.K.; Shaltykova, D.B.; Suleimenov, I.E. Some advantages of non-binary Galois fields for digital signal processing. Indones. J. Electr. Eng. Comput. Sci. 2021, 23, 871–877. [Google Scholar] [CrossRef]
- Mark, W.D. Spectral analysis of the convolution and filtering of non-stationary stochastic processes. J. Sound Vib. 1970, 11, 19–63. [Google Scholar] [CrossRef]
- Ranjan, R.; Singh, A.K.; Jindal, N. Convolution Theorem with Its Derivatives and Multiresolution Analysis for Fractional S-Transform. Circuits Syst. Signal Process. 2019, 38, 5212–5235. [Google Scholar] [CrossRef]
- Naranjo-Torres, J.; Mora, M.; Hernández-García, R.; Barrientos, R.J.; Fredes, C.; Valenzuela, A. A Review of Convolutional Neural Network Applied to Fruit Image Processing. Appl. Sci. 2020, 10, 3443. [Google Scholar] [CrossRef]
- Jha, D.; Riegler, M.A.; Johansen, D.; Halvorsen, P.; Johansen, H.D. DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation. In Proceedings of the IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, 28–30 July 2020; pp. 5564–5585. [Google Scholar] [CrossRef]
- Hodžić, S.; Horak, P.; Pasalic, E. Characterization of Basic 5-Value Spectrum Functions Through Walsh-Hadamard Transform. IEEE Trans. Inf. Theory 2021, 67, 1038–1053. [Google Scholar] [CrossRef]
- Matrassulova, D.K.; Kabdushev, S.B.; Bakirov, A.S.; Suleimenov, I.E. Algorithm for Analyzing Rotating Images Based on the Fourier-Galois Transform. In Proceedings of the 2023 15th International Conference on Computer Research and Development (ICCRD), Hangzhou, China, 10–12 January 2023; pp. 204–209. [Google Scholar]
- Baipakbaeva, S.; Kadyrzhan, N.; Kabdushev, S.; Suleimenov, I.; Mun, G. Rotational Viscometer. Patent No. 36199, 28 April 2023. [Google Scholar]
- Vitulyova, Y.S.; Bakirov, A.S.; Suleimenov, I.E. Galois Fields for Digital Image and Signal Processing: Evidence for the Importance of Field Specificity. In Proceedings of the 2022 5th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), Chengdu, China, 19–21 August 2022; pp. 6342–6376. [Google Scholar]
- Bakirov, A.; Matrassulova, D.; Vitulyova, Y.; Shaltykova, D.; Suleimenov, I. The specifics of the Galois field GF (257) and its use for digital signal processing. Sci. Rep. 2024, 14, 15376. [Google Scholar] [CrossRef] [PubMed]
- Mun, G.; Baipakbaeva, S.; Kadyrzhan, K.; Kabdushev, S.; Vitulyova, Y.S.; Konshin, S.; Suleimenov, I. Modulo 22−1 Adder. Patent No. 36236, 26 May 2023. [Google Scholar]
- Wang, Z.; Zhang, Y.; Chen, Y.; Liu, H.; Wang, B.; Wang, C. A Survey on Programmable Logic Controller Vulnerabilities, Attacks, Detections, and Forensics. Processes 2023, 11, 918. [Google Scholar] [CrossRef]
- | 1 | 6 | 5 | 25 | 26 | 30 |
---|---|---|---|---|---|---|
- | - | 5 × 5 × 30 | - | 5 × 5 | 5 × 30 | - |
a4 | 0 | 0 | 0 | 1 | 1 | 1 |
a3 | 0 | 0 | 0 | 1 | 1 | 1 |
a2 | 0 | 1 | 1 | 0 | 0 | 1 |
a1 | 0 | 1 | 0 | 0 | 1 | 1 |
a0 | 1 | 0 | 1 | 1 | 0 | 0 |
m = 1 | 1 | 2 | 3 | 4 | 5 | m = 2 | 1 | 2 | 3 | 4 | 5 |
a4 | 0 | 0 | 0 | 1 | 0 | a4 | 0 | 1 | 0 | 0 | 0 |
a3 | 0 | 0 | 1 | 0 | 0 | a3 | 0 | 0 | 0 | 1 | 0 |
a2 | 0 | 1 | 0 | 0 | 0 | a2 | 1 | 0 | 0 | 0 | 0 |
a1 | 1 | 0 | 0 | 0 | 0 | a1 | 0 | 0 | 1 | 0 | 0 |
a0 | 0 | 0 | 0 | 0 | 1 | a0 | 0 | 0 | 0 | 0 | 1 |
m = 3 | 1 | 2 | 3 | 4 | 5 | m = 4 | 1 | 2 | 3 | 4 | 5 |
a4 | 0 | 0 | 1 | 0 | 0 | a4 | 1 | 0 | 0 | 0 | 0 |
a3 | 1 | 0 | 0 | 0 | 0 | a3 | 0 | 1 | 0 | 1 | 0 |
a2 | 0 | 0 | 0 | 1 | 0 | a2 | 0 | 0 | 1 | 0 | 0 |
a1 | 0 | 1 | 0 | 0 | 0 | a1 | 0 | 0 | 0 | 1 | 0 |
a0 | 0 | 0 | 0 | 0 | 1 | a0 | 0 | 0 | 0 | 0 | 1 |
m = 1 | 1 | 2 | 3 | m = 2 | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|
a4 | 0 | 1 | 0 | a4 | 1 | 0 | 0 |
a3 | 0 | 1 | 0 | a3 | 1 | 0 | 0 |
a2 | 1 | 0 | 0 | a2 | 0 | 1 | 0 |
a1 | 0 | 0 | 0 | a1 | 0 | 0 | 0 |
a0 | 1 | 1 | 1 | a0 | 1 | 1 | 1 |
i | f | F2 | F1 | F3(6) | F3(5) | F3(4) | F3(3) | F3(2) | F3(1) |
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 5 | 30 | 2 | |||||
2 | 0 | 25 | 1 | 4 | |||||
3 | 0 | 1 | 30 | 8 | |||||
4 | 0 | 5 | 1 | 16 | |||||
5 | 0 | 25 | 30 | 1 | |||||
6 | 1 | 1 | 1 | 2 | |||||
7 | 0 | 5 | 30 | 4 | |||||
8 | 0 | 25 | 1 | 8 | |||||
9 | 1 | 1 | 30 | 16 | |||||
10 | 0 | 5 | 1 | 1 | |||||
11 | 1 | 25 | 30 | 2 | |||||
12 | 0 | 1 | 1 | 4 | |||||
13 | 1 | 5 | 30 | 8 | |||||
14 | 1 | 25 | 1 | 16 | |||||
15 | 1 | 1 | 30 | 1 | |||||
16 | 1 | 5 | 1 | 2 | |||||
17 | 1 | 25 | 30 | 4 | |||||
18 | 1 | 1 | 1 | 8 | |||||
19 | 0 | 5 | 30 | 16 | |||||
20 | 1 | 25 | 1 | 1 | |||||
21 | 0 | 1 | 30 | 2 | |||||
22 | 1 | 5 | 1 | 4 | |||||
23 | 0 | 25 | 30 | 8 | |||||
24 | 0 | 1 | 1 | 16 | |||||
25 | 1 | 5 | 30 | 1 | |||||
26 | 0 | 25 | 1 | 2 | |||||
27 | 0 | 1 | 30 | 4 | |||||
28 | 0 | 5 | 1 | 8 | |||||
29 | 0 | 25 | 30 | 16 | |||||
30 | 0 | 1 | 1 | 1 | |||||
Σ | 10 | 6 | 6 | 17 | 17 | 9 | |||
F1 | 1 | 30 | 1 | 30 | 1 | 30 | |||
F1Σ | 10 | 25 | 6 | 14 | 17 | 22 | |||
F2 | 1 | 25 | 5 | 1 | 25 | 5 | |||
F2F1Σ | 10 | 5 | 30 | 14 | 22 | 17 | |||
Z1 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadyrzhan, K.; Kaldybekov, D.; Baipakbaeva, S.; Vitulyova, Y.; Matrassulova, D.; Suleimenov, I. Electronic Fourier–Galois Spectrum Analyzer for the Field GF(31). Appl. Sci. 2024, 14, 7770. https://doi.org/10.3390/app14177770
Kadyrzhan K, Kaldybekov D, Baipakbaeva S, Vitulyova Y, Matrassulova D, Suleimenov I. Electronic Fourier–Galois Spectrum Analyzer for the Field GF(31). Applied Sciences. 2024; 14(17):7770. https://doi.org/10.3390/app14177770
Chicago/Turabian StyleKadyrzhan, Kaisarali, Daulet Kaldybekov, Saltanat Baipakbaeva, Yelizaveta Vitulyova, Dinara Matrassulova, and Ibragim Suleimenov. 2024. "Electronic Fourier–Galois Spectrum Analyzer for the Field GF(31)" Applied Sciences 14, no. 17: 7770. https://doi.org/10.3390/app14177770
APA StyleKadyrzhan, K., Kaldybekov, D., Baipakbaeva, S., Vitulyova, Y., Matrassulova, D., & Suleimenov, I. (2024). Electronic Fourier–Galois Spectrum Analyzer for the Field GF(31). Applied Sciences, 14(17), 7770. https://doi.org/10.3390/app14177770