Volatile and Antioxidant Compounds of Beetroot Powder Obtained by Dehumidified Air Spray Drying of Cloudy Juice
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Spray Drying
2.3. Analytical Methods
2.3.1. Analysis of Aromatic Compounds
2.3.2. Dry Matter Content
2.3.3. Phenolic Content
2.3.4. Betalain Content
2.3.5. Antioxidant Capacity
CUPRAC Reducing Capacity
Antioxidant Activity
CBA Crocine-Bleaching Assay
Fe (II) Chelating Activity
2.4. Statistical Methods
3. Results and Discussion
3.1. Analysis of Aromatic Compounds
3.2. Phenolic Content
3.3. Betalain Content
3.4. Antioxidant Activity
4. Conclusions
- The powders obtained at a lower temperature (90 °C) without carriers were characterized by the highest share of aromatic volatile compounds, the highest content of betalains and polyphenols and the highest antioxidant activity.
- The addition of carriers (including the variant with added pomace as a natural type of carrier) did not indicate the protection of the active substances present in the juice. The powders obtained with carrier addition compared with those without the carrier addition were characterized by a lower antioxidant activity, lower content of betalains and polyphenols and a lower amount of aromatic volatile compounds.
- No significant differences were found in the content of bioactive and aromatic compounds between powders obtained using different carriers (skim milk powder, Nutriose, maltodextrin and kleptose).
- The high content of betalains indicates the high coloring ability of the powders obtained at a lower temperature (90 °C). Such high coloring power makes it possible to reduce the dosage of dyes to the product. Due to the current clean label trend, the industry needs natural pure dyes.
- Due to the high residue of active substances, low-temperature spray drying using dehumidified air seems to be valuable for the production of dietary supplements and medicines.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, E. Microencapsulated beetroot juice as a potential source of betalain. Powder Technol. 2014, 264, 190–196. [Google Scholar] [CrossRef]
- Bhandari, B.R.; Datta, N.; Howes, T. Problems associated with spray drying of sugar-rich foods. Drying Technol. 1997, 15, 671–684. [Google Scholar] [CrossRef]
- Roos, Y.; Karel, M. Phase Transitions of Mixtures of Amorphous Polysaccharides and Sugars. Biotechnol. Prog. 1991, 7, 49–53. [Google Scholar] [CrossRef]
- Adhikari, B.; Howes, T.; Lecomte, D.; Bhandari, B.R. A glass transition temperature approach for the prediction of the surface stickiness of a drying droplet during spray drying. Powder Technol. 2005, 149, 168–179. [Google Scholar] [CrossRef]
- Namaldi, A.; Çalik, P.; Uludag, Y. Effects of spray drying temperature and additives on the stability of serine alkaline protease powders. Dry. Technol. 2006, 24, 1495–1500. [Google Scholar] [CrossRef]
- Phisut, N. Spray drying technique of fruit juice powder: Some factors influencing the properties of product. Int. Food Res. J. 2012, 19, 1297–1306. [Google Scholar]
- Tontul, I.; Topuz, A. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends Food Sci. Technol. 2017, 63, 91–102. [Google Scholar] [CrossRef]
- Samborska, K.; Wiktor, A.; Jedlińska, A.; Matwijczuk, A.; Jamróz, W.; Skwarczyńska-Maj, K.; Kiełczewski, D.; Tułodziecki, M.; Błażowski, Ł.; Witrowa-Rajchert, D. Development and characterization of physical properties of honey-rich powder. Food Bioprod. Process. 2019, 115, 78–86. [Google Scholar] [CrossRef]
- Samborska, K.; Edris, A.; Jedlińska, A.; Barańska, A. The production of white mulberry molasses powders with prebiotic carrier by dehumidified air-assisted spray drying. J. Food Process Eng. 2021, 45, 1–14. [Google Scholar] [CrossRef]
- Barańska, A.; Jedlińska, A.; Samborska, K. Is it Possible to Produce Carrier-Free Fruit and Vegetable Powders by Spray Drying? Pol. J. Food Nutr. Sci. 2023, 73, 214–223. [Google Scholar] [CrossRef]
- Jedlińska, A.; Samborska, K.; Wiktor, A.; Balik, M.; Derewiaka, D.; Matwijczuk, A.; Gondek, E. Spray drying of pure ki-wiberry pulp in dehumidified air Spray drying of pure kiwiberry pulp in dehumidified air. Dry. Technol. 2022, 40, 1421–1435. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Richardson, B. Identification and Characterization of Potent Odorants in Selected Beet Root (Beta vulgaris) Products. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2013. [Google Scholar]
- Casciano, F.; Mayr, H.; Nissen, L.; Putti, A.; Zoli, F.; Gianotti, A.; Conterno, L. Red beetroot fermentation with different microbial consortia to develop foods with improved aromatic features. Foods 2022, 11, 3055. [Google Scholar] [CrossRef]
- Foss, K.; Starowicz, M.; Kłębukowska, L.; Sawicki, T. Effect of lactic acid fermentation of red beetroot juice on volatile compounds profile and content. Eur. Food Res. Technol. 2023, 249, 2401–2418. [Google Scholar] [CrossRef]
- Jedlińska, A.; Barańska, A.; Witrowa-Rajchert, D.; Ostrowska-Ligęza, E.; Samborska, K. Dehumidified Air-Assisted Spray-Drying of Cloudy Beetroot Juice at Low Temperature. Appl. Sci. 2021, 11, 6578. [Google Scholar] [CrossRef]
- Jedlińska, A.; Wiktor, A.; Witrowa-Rajchert, D.; Derewiaka, D.; Wołosiak, R.; Matwijczuk, A.; Niemczynowicz, A.; Samborska, K. Quality Assessment of Honey Powders Obtained by High- and Low-Temperature Spray Drying. Appl. Sci. 2020, 11, 224. [Google Scholar] [CrossRef]
- Cardoso-Ugarte, G.A.; Sosa-Morales, M.E.; Ballard, T.; Liceaga, A.; San Martín-González, M.F. Microwave-assisted ex-traction of betalains from red beet (Beta vulgaris). LWT 2014, 59, 276–282. [Google Scholar] [CrossRef]
- Özyürek, M.; Güçlü, K.; Apak, R. The main and modified CUPRAC methods of antioxidant measurement. Trends Anal. Chem. TRAC 2011, 30, 652–664. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food. Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Di Majo, D.; La Neve, L.; La Guardia, M.; Casuccio, A.; Giammanco, M. The influence of two different pH levels on the antioxidant properties of flavonols, flavan-3-ols, phenolic acids and aldehyde compounds analysed in synthetic wine and in a phosphate buffer. J. Food Compos. Anal. 2011, 24, 265–269. [Google Scholar] [CrossRef]
- Bountagkidou, O.G.; Ordoudi, S.A.; Tsimidou, M.Z. Structure-antioxidant activity relationship study of natural hy-droxybenzaldehydes using in vitro assays. Food Res. Int. 2010, 43, 2014–2019. [Google Scholar] [CrossRef]
- Lai, L.; Chou, S.T.; Chao, W.W. Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. J. Agric. Food Chem. 2001, 49, 963–968. [Google Scholar] [CrossRef]
- Perusko, M.; Ghnimi, S.; Simovic, A.; Stevanovic, N.; Radomirovic, M.; Gharsallaoui, A.; Smiljanic, K.; Van Haute, S.; Stanic-Vucinic, D.; Cirkovic Velickovic, T. Maillard reaction products formation and antioxidative power of spray dried camel milk powders increases with the inlet temperature of drying. LWT 2021, 143, 111091. [Google Scholar] [CrossRef]
- Vasconcellos, J.; Conte-Junior, C.; Silva, D.; Pierucci, A.P.; Paschoalin, V.; Alvares, T.S. Comparison of total antioxidant potential, and total phenolic, nitrate, sugar, and organic acid contents in beetroot juice, chips, powder, and cooked beetroot. Food Sci. Biotechnol. 2016, 25, 79–84. [Google Scholar] [CrossRef]
- Castellanos-Santiago, E.; Yahia, E.M. Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. J. Agric. Food Chem. 2008, 56, 5758–5764. [Google Scholar] [CrossRef] [PubMed]
- Skopińska, A.; Starzak, K.; Wybraniec, S. Influence of EDTA on stabilization of decarboxylated betalains. Chall. Mod. Technol. 2012, 3, 29–33. [Google Scholar]
- Guldiken, B.; Toydemir, G.; Nur Memis, K.; Okur, S.; Boyacioglu, D.; Capanoglu, E. Home-processed red beetroot (Beta vulgaris L.) products: Changes in antioxidant properties and bioaccessibility. Int. J. Mol. Sci. 2016, 17, 858. [Google Scholar] [CrossRef]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Impact of Thermal Treatment on Color and Pigment Pattern of Red Beet (Beta vulgaris L.) Preparations. J. Food Sci. 2004, 69, C491–C498. [Google Scholar] [CrossRef]
- Brzezińska-Rojek, J.; Sagatovych, S.; Malinowska, P.; Gadaj, K.; Prokopowicz, M.; Grembecka, M. Antioxidant Capacity, Nitrite and Nitrate Content in Beetroot-Based Dietary Supplements. Foods 2023, 12, 1017. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, K.; Ahmed, A.R.; Knorr, D.; Smetanska, I. The effect of different processing methods on phenolic acid content and antioxidant activity of red beet. Food Res. Int. 2012, 48, 16–20. [Google Scholar] [CrossRef]
- Samborska, K.; Barańska, A.; Szulc, K.; Jankowska, E.; Truszkowska, M.; Ostrowska-Ligęza, E.; Wołosiak, R.; Szymańska, E.; Jedlińska, A. Reformulation of spray-dried apple concentrate and honey for the enhancement of drying process perfor-mance and the physicochemical properties of powders. J. Sci. Food Agric. 2020, 100, 2224–2235. [Google Scholar] [CrossRef] [PubMed]
- Szelaąg, M.; Mikulski, D.; Molski, M. Quantum-chemical investigation of the structure and the antioxidant properties of α-lipoic acid and its metabolites. J. Mol. Model. 2012, 18, 2907–2916. [Google Scholar] [CrossRef] [PubMed]
Variant | Juice Type | Carrier | Inlet/Outlet Temperature [°C] |
---|---|---|---|
MJ130 | Cloudy juice mixed with beetroot waste | Not added | 130/80 |
J130 | Cloudy juice | Not added | 130/80 |
J90 | Cloudy juice | Not added | 90/55 |
J90c | Concentrated cloudy juice | Not added | 90/55 |
JM130 | Cloudy juice | Milk powder | 130/80 |
JN130 | Cloudy juice | Nutriose | 130/80 |
JMD130 | Cloudy juice | Maltodextrin | 130/80 |
JK130 | Cloudy juice | Kleptose | 130/80 |
Group of Compounds | Compound Name | MJ130 mg/100 g Solids | J130 mg/100 g Solids | J90 mg/100 g Solids | J90c mg/100 g Solids |
---|---|---|---|---|---|
Aldehydes | Pentanal | 16.89 ± 0.19 a | 12.23 ± 3.52 a | 4.91 ± 0.19 a | nd |
Nonanal | 32.22 ± 1.09 b | nd | 12.74 ± 1.09 a | 8.95 ± 1.88 a | |
Octanal | nd | nd | nd | 1.43 ± 0.35 a | |
Decanal | nd | nd | nd | 4.72 ± 0.42 a | |
Benzene | nd | nd | 2.39 ± 0.12 b | 1.02 ± 0.21 a | |
acetaldehyde | |||||
3-furaldehyde | nd | 142.79 ± 36.63 a | nd | nd | |
2-furan | 37.44 ± 3.72 b | nd | 6.69 ± 1.23 a | nd | |
carboxaldehyde | |||||
5-methyl furfural | 5.59 ± 1.55 a | nd | 2.27 ± 0.20 a | nd | |
5-methyl-2-furancarboxaldehyde | 9.24 ± 0.55 a | 104.23 ± 14.24 b | nd | nd | |
5-(hydroxymethyl)-2-furancarboxaldehyde | 77.28 ± 10.74 b | 175.10 ± 12.93 a | 20.37 ± 0.57 c | nd | |
Total aldehydes | 178.66 ± 11.41 b | 434.35 ± 67.32 c | 54.01 ± 5.33 a | 16.12 ± 2.86 a | |
Alcohols | 1-hydroxy-2-propanone | 29.53 ± 0.36 a | 93.27 ± 13.95 b | 11.47 ± 0.51 a | nd |
2-furanmethano | 17.33 ± 3.64 b | 57.82 ± 1.56 a | 3.89 ± 0.18 c | 0.87 ± 0.05 d | |
cis-1,2-cyclohexanediol | nd | 7.08 ± 0.46 a | nd | nd | |
5-methyl-2-furanmethanol | 17.31 ± 1.16 a | nd | nd | nd | |
2-cyclohexen-1-ol | 6.79 ± 1.74 a | nd | nd | nd | |
E-11,13-tetradecadien-1-ol | 9.45 ± 2.47 a | nd | nd | nd | |
1,4-butanediol | 3.53 ± 0.43 a | 3.08 ± 0.82 a | nd | nd | |
6-methyl-2-pyrazinylmethanol | 22.04 ± 0.22 b | nd | nd | 1.58 ± 0.07 a | |
2,4-dimethyl-3-pentanol | nd | nd | nd | 9.23 ± 1.58 a | |
1-hexanol | nd | nd | nd | 0.84 ± 0.04 a | |
1-octanol | nd | nd | nd | 0.31 ± 0.02 a | |
1-nonanol | nd | nd | nd | 0.49 ± 0.10 a | |
1-hexadecanol | nd | nd | nd | 0.35 ± 0.09 a | |
Phenol | nd | nd | 6.02 ± 0.07 b | 0.65 ± 0.02 a | |
Cyclopropyl carbinol | nd | nd | nd | 0.90 ± 0.04 a | |
2-phenoxy- ethanol | nd | nd | nd | 0.66 ± 0.03 a | |
Total alcohols | 105.98 ± 7.01 b | 161.25 ± 20.13 c | 21.39 ± 0.57 a | 15.05 ± 2.16 a | |
Esters | N-hydroxy-Benzenecarboximidic acid methyl ester | 22.06 ± 1.52 b | 32.44 ± 2.36 c | 15.19 ± 0.23 b | 3.40 ± 0.08 a |
Isopropyl myristate | 6.52 ± 0.23 a | nd | nd | nd | |
Hexadecanoic acid methyl ester | 10.47 ± 1.71 a | nd | 5.63 ± 0,11 a | nd | |
Hexadecanoic acid ethyl ester | nd | nd | nd | 1.27 ± 0.15 a | |
2-oxo-Propanoic acid methyl ester | nd | nd | 1.33 ± 0.20 a | nd | |
oxiranyl 2-Propenoic acid methyl ester | nd | 13.04 ± 1.58 a | nd | nd | |
4-methyl-2,3-Pentanedione | nd | 11.23 ± 0.59 a | nd | nd | |
9-oxo-Nonanoic acid methyl ester | nd | nd | nd | 1.00 ± 0.08 a | |
Total esters | 39.05 ± 0.60 c | 56.70 ± 4.73 d | 22.15 ± 0.77 b | 5.67 ± 0.22 a | |
Lactones | Butyrolactone | 7.45 ± 1.42 a | 15.61 ± 0.61 b | 4.94 ± 0.03 a | nd |
2-hydroxy-gamma-butyrolactone | 12.22 ± 0.33 bc | 17.28 ± 3.97 c | 4.23 ± 0.60 ab | 0.55 ± 0.08 a | |
Total lactones | 19.67 ± 2.47 bc | 32.89 ± 6.47 c | 9.17 ± 0.80 ab | 0.55 ± 0.08 a | |
Hydrocarbones | 2-methyl-Cyclopentanone, | nd | nd | 1.71 ± 0.15 a | nd |
Total hydrocarbones | nd | nd | 1.71 ± 0.15 a | nd | |
Ketones | 6-oxa-bicyclo [3.1.0]hexan-3-one | 16.49 ± 1.08 b | 12.77 ± 0.61 b | 2.26 ± 0.12 a | nd |
2,5-dimethyl-4-hydroxy-3(2H)-furanone | 1.42 ± 0.32 a | 12.03 ± 0.62 a | 1.02 ± 0.04 b | nd | |
2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one | 5.59 ± 0.58 b | 81.79 ± 20.00 a | nd | nd | |
3,4-octanedione | nd | 7.51 ± 3.03 a | nd | nd | |
3-penten-2-one, 3-(2-furanyl) (3Z)-3-(2-Furyl)-3-penten-2-one | nd | 3.86 ± 1.86 a | nd | nd | |
dihydro-2(3H)-furanone | nd | nd | nd | 1.64 ± 0.00 a | |
Total ketones | 23.51 ± 1.16 a | 117.97 ± 35.18 b | 3.29 ± 0.23 a | 1.64 ± 0.00 a | |
Acids | Trans 2-hexenoic acid | nd | 14.82 ± 6.11 a | nd | nd |
Total acids | nd | 14.82 ± 6.11 a | nd | nd | |
Others | Dimethyl sulfoxide | nd | nd | 3.99 ± 0.38 b | 0.72 ± 0.10 a |
Methanesulfonyl chloride | nd | 5.57 ± 1.43 a | nd | nd | |
2-formyl-5-hydroxypyridine | nd | 4.19 ± 0.29 a | 4.65 ± 0.37 a | nd | |
Borane, chlorodipropyl- | nd | nd | nd | 2.44 ± 0.03 a | |
Total others | nd | 9.76 ± 1.72 b | 8.64 ± 0.75 b | 3.16 ± 0.11 a | |
Total | 366.86 ± 5.12 b | 827.74 ± 2.89 c | 120.36 ± 8.6 a | 42.19 ± 5.43 a |
Group of Compounds | Compound Name | JM130 mg/100 g Honey Solids | JN130 mg/100 g Solids | JMD130 mg/100 g Solids | JK130 mg/100 g Solids |
---|---|---|---|---|---|
Aldehydes | Pentanal | nd | 34.72 ± 2.16 a | 73.60 ± 8.22 b | nd |
Hexanal | 266.98 ± 19.62 c | 120.06 ± 16.62 b | 35.38 ± 0.87 a | 24.14 ± 0.35 a | |
Octanal | 19.25 ± 2.05 a | nd | nd | nd | |
Nonanal | 18.42 ± 0.12 b | 36.25 ± 0.70 c | 9.22 ± 1.16 a | nd | |
5-methyl furfural | 2.00 ± 0.31 a | nd | nd | 5.93 ± 0.14 b | |
2-furancarboxaldehyde | nd | 21.09 ± 0.47 a | nd | nd | |
5-methyl-2-furancarboxaldehyde, | nd | nd | 36.95 ± 31.42 a | nd | |
5-(hydroxymethyl)-2-furancarboxaldehyde | 28.13 ± 6.07 a | nd | 54.57 ± 11.52 b | nd | |
Total aldehydes | 334.78 ± 28.00 b | 212.13 ± 19.96 ab | 209.72 ± 53.19 ab | 97.42 ± 0.52 a | |
Alcohols | 1-hydroxy-2-propanone | 7.74 ± 1.36 a | 42.88 ± 5.49 b | 83.78 ± 5.49 c | 66.62 ± 1.36 bc |
2-amino-1,3-propanediol | nd | nd | nd | 2.48 ± 0.28 a | |
2-furanmethanol | 6.00 ± 0.30 a | 14.79 ± 1.79 a | 25.13 ± 1.29 b | 59.29 ± 3.30 c | |
Cyclopropyl carbinol | 5.19 ± 1.11 a | nd | nd | 64.40 ± 2.46 b | |
4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | nd | nd | nd | 14.72 ± 1.17 a | |
4H-pyran-4-one, 3-hydroxy-2-methyl- | 1.93 ± 0.37 a | nd | nd | nd | |
1-hexanol | 8.36 ± 0.40 a | 25.07 ± 2.20 b | nd | nd | |
1-heptanol | 2.59 ± 0.31 a | nd | nd | nd | |
1-octanol | 7.03 ± 0.00 a | nd | 7.39 ± 0.54 a | nd | |
3-octanol, 2-methyl- | nd | nd | 4.64 ± 0.57 a | nd | |
1,4-pentanediol | nd | 4.75 ± 1.07 a | nd | nd | |
1-octen-3-ol | 4.85 ± 0.19 a | nd | nd | nd | |
Total alcohols | 43.69 ± 4.03 a | 87.50 ± 11.26 b | 124.42 ± 8.79 c | 209.60 ± 8.27 d | |
Esters | oxiranyl-2-propenoic acid methyl ester | nd | nd | nd | 3.69 ± 0.44 a |
Isopropyl myristate | 4.49 ± 0.71 a | 2.44 ± 0.40 a | 3.05 ± 1.01 a | 10.56 ± 0.89 b | |
Octadecanoic acid methyl ester | 7.12 ± 0.72 b | nd | 4.70 ± 0.69 a | 3.13 ± 0.43 a | |
Tetradecanoic acid methyl ester | nd | nd | 0.49 ± 0.16 a | nd | |
Hexadecanoic acid methyl ester | 14.71 ± 2.94 b | nd | 5.56 ± 0.18 a | nd | |
Total esters | 26.32 ± 4.37 c | 2.44 ± 0.40 a | 13.8 ± 2.04 b | 17.38 ± 1.76 b | |
Lactones | Butyrolactone | 2.76 ± 1.87 a | 11.90 ± 0.22 b | 8.09 ± 0.92 ab | 8.63 ± 1.57 ab |
2-hydroxy-gamma-butyrolactone | 1.29 ± 0.11 a | 13.09 ± 1.86 ab | 18.31 ± 3.56 b | 14.31 ± 2.27 b | |
Total lactones | 4.05 ± 1.98 a | 24.99 ± 2.08 b | 26.40 ± 4.48 b | 22.94 ± 0.70 b | |
Hydrocarbones | 2-methyl-Cyclopentanon | nd | nd | nd | 15.30 ± 2.26 a |
Total hydrocarbones | nd | nd | nd | 15.30 ± 2.26 a | |
Ketones | 2(5H)-Furanone | 0.90 ± 0.20 a | nd | nd | 13.31 ± 3.12 b |
1-(1H-pyrrol-2-yl)- Ethanone | nd | nd | nd | 1.08 ± 0.06 a | |
3-hydroxy-2-methyl-4H-Pyran-4-one | nd | nd | nd | 2.23 ± 0.05 a | |
dihydro-4-hydroxy-2(3H)-Furanone | nd | nd | nd | 17.46 ± 3.31 a | |
-(2-furanyl)-1-Propanone | 5.45 ± 1.55 a | nd | nd | 8.31 ± 0.41 a | |
2(3H)-Furanone, 5-ethyldihydro- | nd | nd | nd | 13.52 ± 2.11 a | |
-(2-furanyl)-3-Penten-2-one | nd | nd | nd | 1.08 ± 0.11 a | |
6-Oxa-bicyclo [3.1.0]hexan-3-one | 2.36 ± 0.28 | 14.12 ± 3.13 | 32.42 ± 4.14 | nd | |
2-Furyl ethyl ketone | nd | nd | 7.25 ± 0.51 a | nd | |
4-Hepten-3-one, 4-methyl- | nd | 93.39 ± 5.65 a | nd | nd | |
Total ketones | 8.71 ± 2.03 a | 107.51 ± 8.78 c | 39.67 ± 4.65 b | 56.99 ± 9.17 b | |
Acids | 4-oxo-Pentanoic acid | nd | nd | nd | 1.76 ± 0.07 a |
Acetic acid | 8.73 ± 1.17 a | nd | 29.16 ± 0.02 b | 85.14 ± 8.07 c | |
3-hydroxy- Butanoic acid | nd | nd | 13.51 ± 0.76 a | nd | |
3,4-dyhydroxymandelic acid-tetrams | nd | nd | 4.68 ± 1.01 a | nd | |
9-oxo-Nonanoic acid methyl ester | nd | nd | 3.25 ± 0.63 a | nd | |
Total acids | 8.73 ± 1.17 a | nd | 50.60 ± 2.43 b | 86.90 ± 8.14 c | |
Others | 1-methylpentyl Hydroperoxide | nd | nd | nd | 4.27 ± 0.33 a |
Methane, sulfinylbis | nd | nd | nd | 10.53 ± 0.72 a | |
2-methyl-, oxime Propanal | nd | 7.67 ± 1.37 a | nd | 11.74 ± 0.95 a | |
2-Pyrrolidinone | 6.44 ± 0.76 a | nd | nd | 7.09 ± 0.68 a | |
Dimethyl sulfoxide | 5.01 ± 0.67 a | nd | 16.28 ± 2.23 b | nd | |
methoxy-phenyl-Oxime | nd | 55.30 ± 2.01 a | 44.94 ± 1.44 a | nd | |
1-(dimethoxymethyl)-4-(1-methoxy-1-methylethyl)-Benzene | nd | 12.55 ± 1.27 a | nd | nd | |
6,10-dimethyl-5,9-Undecadien-2-one | 0.49 ± 0.09 a | nd | nd | nd | |
2,3-dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one- | 6.90 ± 0.10 a | nd | nd | nd | |
[(2-fluorophenyl)methyl]-1H-Purin-6-amine, | 0.69 ± 0.01 a | nd | nd | nd | |
Total others | 19.54 ± 0.14 a | 53.88 ± 2.14 bc | 61.23 ± 1.12 c | 47.23 ± 4.22 b | |
Total | 445.82 ± 41.72 a | 488.45 ± 44.62 a | 525.83 ± 61.87 a | 553.77 ± 21.89 a |
Juice | MJ130 | J130 | J90 | J90c | |
---|---|---|---|---|---|
Phenolic content | |||||
mg GAE/100 g | 48.88 ± 2.82 a | 178.97 ± 5.75 b | 236.79 ± 9.03 c | 249.551 ± 6.67 cd | 257.67 ± 9.23 d |
mg GAE/100 g d.m. of dried material | 495.40 ± 28.62 c | 187.93 ± 6.04 a | 246.62 ± 9.40 b | 258.98 ± 17.29 b | 266.21 ± 9.54 b |
Betalain content | |||||
mg betalain/100 g | 28.59 ± 0.30 a | 307.48 ± 16.41 b | 352.99 ± 14.26 c | 677.31 ± 9.72 e | 551.17 ± 11.85 d |
mg betalain/100 g d.m. of dried material | 289.75 ± 3.00 a | 322.87 ± 17.23 b | 367.64 ± 14.85 c | 702.90 ± 10.08 e | 569.42 ± 12.24 d |
CUPRAC | |||||
mg Trx/100 g in 70% acetone | 121.99 ± 4.53 a | 287.31 ± 9.40 b | 406.42 ± 17.23 c | 517.58 ± 15.43 d | 544.43 ± 15.98 d |
mg Trx/100 g in buffer | 274.53 ± 3.34 a | 1324.50 ± 22.20 b | 2263.60 ± 182.32 c | 2907.14 ± 204.98 d | 3310.76 ± 263.27 e |
mg Trx/100 g d.m. of dried material in 70% acetone | 1236.36 ± 45.93 d | 301.70 ± 9.87 a | 423.29 ± 17.94 b | 537.13 ± 16.01 c | 562.47 ± 16.51 c |
mg Trx/100 g d.m. of dried material in buffer | 2782.45 ± 27.60 c | 1390.80 ± 23.31 a | 2357.55 ± 189.89 b | 3016.95 ± 212.73 c | 3420.42 ± 271.99 d |
DPPH | |||||
mg Trx/100 g in 70% acetone | 32.43 ± 0.98 a | 192.31 ± 4.87 b | 219.06 ± 5.72 b | 218.76 ± 38.12 b | 300.43 ± 10.61 c |
mg Trx/100 g d.m. of dried material in 70% acetone | 328.70 ± 9.96 b | 201.94 ± 5.11 a | 228.16 ± 5.96 a | 227.02 ± 39.56 a | 310.38 ± 10.96 b |
ABTS | |||||
mg Trx/100 g in 70% acetone | 155.46 ± 4.70 a | 554.83 ± 12.80 b | 618.35 ± 12.03 c | 634.78 ± 17.24 cd | 661.77 ± 9.86 d |
mg Trx/100 g in buffer | 1755.69 ± 76.16 a | 1558.04 ± 145.05 a | 2006.53 ± 339.51 a | 2805.99 ± 163.44 b | 2497.44 ± 144.20 b |
mg Trx/100 g d.m. of dried material in 70% acetone | 1575.66 ± 47.60 c | 582.60 ± 13.44 a | 644.02 ± 12.53 b | 658.76 ± 17.89 b | 683.69 ± 10.19 b |
mg Trx/100 g d.m. of dried material in buffer | 1,7794.47 ± 771.86 d | 1636.03 ± 152.31 a | 2089.81 ± 353.61 ab | 2911.98 ± 169.61 c | 2580.16 ± 148.98 bc |
CBA | |||||
mg Trx/100 g in 70% acetone | 46.85 ± 0.67 a | 153.52 ± 8.04 a | 226.97 ± 10.59 c | 281.69 ± 10.24 d | 325.61 ± 17.72 e |
mg Trx/100 g in buffer | 26.17 ± 0.78 a | 272.48 ± 4.77 b | 310.15 ± 10.36 b | 456.93 ± 18.62 c | 546.19 ± 34.16 d |
mg Trx/100 g d.m. of dried material 70% acetone | 474.86 ± 6.76 e | 161.21 ± 8.45 a | 236.39 ± 11.03 b | 292.33 ± 10.63 c | 336.40 ± 18.30 d |
mg Trx/100 g d.m. of dried material in buffer | 265.24 ± 7.89 a | 286.12 ± 5.00 ab | 323.02 ± 10.79 b | 474.19 ± 19.32 c | 564.28 ± 35.29 d |
Chelating FE (II) | |||||
mg Fe/100 g | 56.41 ± 0.73 d | 32.60 ± 0.78 a | 44.47 ± 4.36 b | 49.59 ± 1.02 c | 49.34 ± 1.34 bc |
mg Fe/100 g d.m. of dried material | 571.77 ± 7.45 c | 34.23 ± 0.82 a | 46.31 ± 4.54 b | 51.46 ± 1.06 b | 50.97 ± 1.39 b |
JM130 | JN130 | JMD130 | JK130 | |
---|---|---|---|---|
Phenolic content | ||||
mg GAE/100 g | 151.09 ± 2.18 b | 156.74 ± 3.90 b | 137.65 ± 5.46 a | 153.30 ± 6.75 b |
mg GAE/100 g d.m. of dried material | 203.82 ± 3.08 a | 214.97 ± 5.39 a | 189.54 ± 7.54 a | 212.94 ± 9.40 a |
Betalain content | ||||
mg betalain/100 g | 229.51 ± 8.12 a | 250.43 ± 7.42 b | 235.08 ± 2.56 a | 240.51 ± 9.14 ab |
mg betalain/100 g d.m. of dried material | 182.23 ± 6.44 a | 194.72 ± 5.77 b | 182.48 ± 1.99 a | 188.44 ± 7.16 ab |
CUPRAC | ||||
mg Trx/100 g in 70% acetone | 224.23 ± 7.78 a | 254.89 ± 8.38 b | 216.44 ± 1.92 a | 242.33 ± 11.52 b |
mg Trx/100 g in buffer | 2648.88 ± 169.71 b | 1431.17 ± 142.91 a | 1292.96 ± 288.88 a | 1326.77 ± 17.34 a |
mg Trx/100 g d.m. of dried material in 70% acetone | 291.17 ± 10.98 a | 351.07 ± 11.58 b | 297.67 ± 2.65 a | 335.93 ± 16.05 b |
mg Trx/100 g d.m. of dried material in buffer | 3739.08 ± 239.55 b | 1978.36 ± 197.55 a | 1784.23 ± 398.65 a | 1848.06 ± 24.15 a |
share of carrier activity in 70% acetone [%] | 6.89 | 0.36 | 0.34 | 0.48 |
share of carrier activity in buffer [%] | nd | nd | nd | nd |
DPPH | ||||
mg Trx/100 g in 70% acetone | 118.11 ± 2.60 a | 138.45 ± 4.12 b | 118.59 ± 4.62 a | 126.14 ± 6.62 a |
mg Trx/100 g d.m. of dried material in 70% acetone | 161.95 ± 3.68 a | 191.39 ± 5.69 b | 162.86 ± 6.38 a | 174.86 ± 9.22 a |
share of carrier activity [%] | 2.86 | nd | 0.48 | 0.48 |
ABTS | ||||
mg Trx/100 g in 70% acetone | 362.81 ± 15.39 a | 364.67 ± 10.90 a | 348.24 ± 16.05 a | 350.43 ± 13.19 a |
mg Trx/100 g in buffer | 2179.75 ± 44.28 b | 1421.78 ± 97.43 a | 1534.14 ± 29.49 a | 1380.41 ± 129.90 a |
mg Trx/100 g d.m. of dried material in 70% acetone | 466.01 ± 21.73 a | 486.94 ± 15.06 a | 461.66 ± 22.15 a | 470.98 ± 18.37 a |
mg Trx/100 g d.m. of dried material in buffer | 3076.87 ± 62.50 b | 1965.38 ± 134.69 a | 2117.04 ± 40.69 a | 1922.77 ± 180.94 a |
share of carrier activity in 70% acetone [%] | 7.71 | 3.40 | 3.93 | 3.51 |
share of carrier activity in buffer [%] | 6.75 | 0.73 | 0.61 | 0.75 |
CBA | ||||
mg Trx/100 g in 70% acetone | 138.56 ± 2.65 a | 120.05 ± 22.36 a | 133.22 ± 8.29 a | 137.39 ± 4.80 a |
mg Trx/100 g in buffer | 288.34 ± 1.73 b | 248.00 ± 4.99 a | 235.22 ± 7.43 a | 230.81 ± 20.15 a |
mg Trx/100 g d.m. of dried material in 70% acetone | 185.59 ± 3.73 a | 162.71 ± 30.91 a | 180.30 ± 11.44 a | 187.74 ± 6.68 a |
mg Trx/100 g d.m. of dried material in buffer | 298.00 ± 2.45 a | 342.82 ± 6.90 b | 324.60 ± 10.25 ab | 321.49 ± 28.07 ab |
share of carrier activity in 70% acetone [%] | 5.11 | 1.95 | 1.92 | 1.90 |
share of carrier activity in buffer [%] | 26.79 | nd | nd | nd |
Chelating Fe (II) | ||||
mg Fe/100 g | 37.19 ± 0.40 a | 33.98 ± 1.18 a | 33.90 ± 1.43 a | 35.09 ± 4.68 a |
mg Fe/100 g d.m. of dried material | 31.09 ± 0.56 a | 46.97 ± 1.63 b | 46.78 ± 1.98 b | 48.87 ± 6.52 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barańska, A.; Jedlińska, A.; Wołosiak, R.; Witrowa-Rajchert, D.; Derewiaka, D. Volatile and Antioxidant Compounds of Beetroot Powder Obtained by Dehumidified Air Spray Drying of Cloudy Juice. Appl. Sci. 2024, 14, 7316. https://doi.org/10.3390/app14167316
Barańska A, Jedlińska A, Wołosiak R, Witrowa-Rajchert D, Derewiaka D. Volatile and Antioxidant Compounds of Beetroot Powder Obtained by Dehumidified Air Spray Drying of Cloudy Juice. Applied Sciences. 2024; 14(16):7316. https://doi.org/10.3390/app14167316
Chicago/Turabian StyleBarańska, Alicja, Aleksandra Jedlińska, Rafał Wołosiak, Dorota Witrowa-Rajchert, and Dorota Derewiaka. 2024. "Volatile and Antioxidant Compounds of Beetroot Powder Obtained by Dehumidified Air Spray Drying of Cloudy Juice" Applied Sciences 14, no. 16: 7316. https://doi.org/10.3390/app14167316
APA StyleBarańska, A., Jedlińska, A., Wołosiak, R., Witrowa-Rajchert, D., & Derewiaka, D. (2024). Volatile and Antioxidant Compounds of Beetroot Powder Obtained by Dehumidified Air Spray Drying of Cloudy Juice. Applied Sciences, 14(16), 7316. https://doi.org/10.3390/app14167316