Influence of Mouse Grip Type on Flicking and Tracking Tasks Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Protocol
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yılmaz, E.; Griffiths, M.D. Children’s social problem-solving skills in playing videogames and traditional games: A systematic review. Educ. Inf. Technol. 2023, 28, 11679–11712. [Google Scholar] [CrossRef]
- Boyle, R. From Spacewar! To Twitch.tv: The Influence of Competition in Video Games and the Rise of eSports. Bachelor’s Thesis, Dominican University of California, San Rafael, CA, USA, 2019. [Google Scholar]
- Rossoni, A.; Vecchiato, M.; Brugin, E.; Tranchita, E.; Adami, P.E.; Bartesaghi, M.; Cavarretta, E.; Palermi, S. The eSports medicine: Pre-participation screening and injuries management—An update. Sports 2023, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Hamari, J.; Sjöblom, M. What Is eSports and Why Do People Watch It? Internet Res. 2017, 27, 211–232. [Google Scholar] [CrossRef]
- Watson, B.; Spjut, J.; Kim, J.; Listman, J.; Kim, S.; Wimmer, R.; Putrino, D.; Lee, B. Esports and High Performance HCI. In Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; ACM: New York, NY, USA, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Conroy, E.; Toth, A.J.; Campbell, M.J. The Effect of Computer Mouse Mass on Target Acquisition Performance among Action Video Gamers. Appl. Ergon. 2022, 99, 103637. [Google Scholar] [CrossRef] [PubMed]
- Ivkovic, Z.; Stavness, I.; Gutwin, C.; Sutcliffe, S. Quantifying and Mitigating the Negative Effects of Local Latencies on Aiming in 3D Shooter Games. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, 18–23 April 2015; ACM: New York, NY, USA, 2015; pp. 135–144. [Google Scholar] [CrossRef]
- Iwatsuki, T.; Hagiwara, G.; Dugan, M.E. Effectively Optimizing Esports Performance through Movement Science Principles. Int. J. Sports Sci. Coach. 2022, 17, 202–207. [Google Scholar] [CrossRef]
- Emara, A.K.; Ng, M.K.; Cruickshank, J.A.; Kampert, M.W.; Piuzzi, N.S.; Schaffer, J.L.; King, D. Gamer’s Health Guide: Optimizing Performance, Recognizing Hazards, and Promoting Wellness in Esports. Curr. Sports Med. Rep. 2020, 19, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Segawa, N. Method of Electrical Muscle Stimulation for Training FPS Game Players in the Timing of Shots. Proc. ACM Hum.-Comput. Interact. 2023, 7, 1234–1252. [Google Scholar] [CrossRef]
- Buckley, D.; Chen, K.; Knowles, J. Predicting Skill from Gameplay Input to a First-Person Shooter. In Proceedings of the 2013 IEEE Conference on Computational Inteligence in Games (CIG), Niagara Falls, ON, Canada, 11–13 August 2013; pp. 1–8. [Google Scholar] [CrossRef]
- Looser, J.; Cockburn, A.; Savage, J. On the Validity of Using First-Person Shooters for Fitts’ Law Studies. People Comput. XIX 2005, 2, 33–36. [Google Scholar]
- Lee, D.L.; McLoone, H.; Dennerlein, J.T. Observed Finger Behaviour during Computer Mouse Use. Appl. Ergon. 2008, 39, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, V. Carpal Tunnel Syndrome Symptoms in Esports Players. Bachelor’s Thesis, Satakunta University of Applied Sciences, Pori, Finland, 2020. [Google Scholar]
- Doig, G.S.; Simpson, F. Randomization and Allocation Concealment: A Practical Guide for Researchers. J. Crit. Care 2005, 20, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Zhuang, J.; Nitsche, M.A.; Lin, Z.; Ma, Y.; Liu, Y. Application of transcranial alternating current stimulation to improve eSports-related cognitive performance. Front. Neurosci. 2024, 18, 1308370. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Quantitative Methods in Psychology: A Power Primer. Psychol. Bull. 1992, 112, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [PubMed]
- Kieslich, P.J.; Schoemann, M.; Grage, T.; Hepp, J.; Scherbaum, S. Design Factors in Mouse-Tracking: What Makes a Difference? Behav. Res. 2020, 52, 317–341. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.G.; Triggs, T.J. Characteristics of Cursor Trajectories Controlled by the Computer Mouse. Ergonomics 2001, 44, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Hwang, F.; Keates, S.; Langdon, P.; Clarkson, J. A Submovement Analysis of Cursor Trajectories. Behav. Inf. Technol. 2005, 24, 205–217. [Google Scholar] [CrossRef]
- Engel, K.C.; Soechting, J.F. Manual Tracking in Two Dimensions. J. Neurophysiol. 2000, 83, 3483–3496. [Google Scholar] [CrossRef] [PubMed]
Parameter | Mouse Grip Type | Mean (SD) | F | p-Value |
---|---|---|---|---|
Score (n) | Palm Grip | 6711.11 (258.38) | 1.081 | 0.358 |
Claw Grip | 6618.50 (506.17) | |||
Fingertip Grip | 6918.30 (428.93) | |||
Reaction time (s) | Palm Grip | 0.82 (0.03) | 0.299 | 0.745 |
Claw Grip | 0.83 (0.06) | |||
Fingertip Grip | 0.81 (0.06) | |||
Precision (%) | Palm Grip | 51.57 (2.88) | 1.565 | 0.235 |
Claw Grip | 54.46 (3.35) | |||
Fingertip Grip | 55.40 (3.31) | |||
Aim Time (s) | Palm Grip | 0.85 (0.03) | 1.085 | 0.327 |
Claw Grip | 0.86 (0.06) | |||
Fingertip Grip | 0.81 (0.09) | |||
Total distance (px) | Palm Grip | 20,693.67 (1210.84) | 0.855 | 0.441 |
Claw Grip | 21,833.96 (1588.70) | |||
Fingertip Grip | 22,074.37 (1703.33) | |||
Minimum distance (px) | Palm Grip | 37.70 (7.77) | 1.341 | 0.285 |
Claw Grip | 42.07 (9.04) | |||
Fingertip Grip | 34.70 (10.84) | |||
Trajectory (%) | Palm Grip | 78.98 (1,02) | 4.585 | 0.024 |
Claw Grip | 71.46 (4.62) | |||
Fingertip Grip | 77.21 (5.38)palm | |||
Average cursor trajectory (px) | Palm Grip | 370.66 (23.06) | 5.448 | 0.013 |
Claw Grip | 445.82 (38.55)palm | |||
Fingertip Grip | 404.40 (39.56) | |||
Minimum cursor trajectory (px) | Palm Grip | 103.11 (17.58)claw | 11.784 | <0.001 |
Claw Grip | 140.37 (10.68) | |||
Fingertip Grip | 106.57 (20.07)claw | |||
Average velocity (m/s) | Palm Grip | 0.026 (7.69−5) | 0.201 | 0.820 |
Claw Grip | 0.028 (0.005) | |||
Fingertip Grip | 0.028 (0.004) | |||
Average acceleration (m/s2) | Palm Grip | 5.27−4 (4.58−6) | 0.160 | 0.853 |
Claw Grip | 5.61−4 (1.02−4) | |||
Fingertip Grip | 5.54−4 (8.59−5) | |||
Hand movement (mm) | Palm Grip | 133.00 (0.98) | 0.250 | 0.782 |
Claw Grip | 143.30 (24.25) | |||
Fingertip Grip | 140.47 (21.67) |
Parameter | Mouse Grip Type | Mean (SD) | F | p-Value |
---|---|---|---|---|
Score (n) | Palm Grip | 1412.78 (321.15) | 1.684 | 0.212 |
Claw Grip | 1606.70 (242.68) | |||
Fingertip Grip | 1671.97 (148.42) | |||
Average velocity (m/s) | Palm Grip | 0.027 (0.004) | 0.669 | 0.525 |
Claw Grip | 0.025 (0.003) | |||
Fingertip Grip | 0.025 (0.002) | |||
Average acceleration (m/s2) | Palm Grip | 5.32−4 (8.26−5) | 0.846 | 0.446 |
Claw Grip | 4.92−4 (4.96−5) | |||
Fingertip Grip | 4.90−4 (4.29−5) | |||
Hand movement (mm) | Palm Grip | 135.55 (24.25) | 0.532 | 0.596 |
Claw Grip | 127.18 (16.42) | |||
Fingertip Grip | 125.12 (11.54) |
Parameter | Reaction Time | Total Distance | Minimum Cursor Trajectory |
---|---|---|---|
Score (n) | −0.911 * | 0.724 * | |
Aim time (s) | 0.643 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchis-Sanchis, R.; Encarnación-Martínez, A.; Catalá-Vilaplana, I.; Priego-Quesada, J.I.; Aparicio, I.; Pérez-Soriano, P. Influence of Mouse Grip Type on Flicking and Tracking Tasks Performance. Appl. Sci. 2024, 14, 7112. https://doi.org/10.3390/app14167112
Sanchis-Sanchis R, Encarnación-Martínez A, Catalá-Vilaplana I, Priego-Quesada JI, Aparicio I, Pérez-Soriano P. Influence of Mouse Grip Type on Flicking and Tracking Tasks Performance. Applied Sciences. 2024; 14(16):7112. https://doi.org/10.3390/app14167112
Chicago/Turabian StyleSanchis-Sanchis, Roberto, Alberto Encarnación-Martínez, Ignacio Catalá-Vilaplana, Jose Ignacio Priego-Quesada, Inmaculada Aparicio, and Pedro Pérez-Soriano. 2024. "Influence of Mouse Grip Type on Flicking and Tracking Tasks Performance" Applied Sciences 14, no. 16: 7112. https://doi.org/10.3390/app14167112
APA StyleSanchis-Sanchis, R., Encarnación-Martínez, A., Catalá-Vilaplana, I., Priego-Quesada, J. I., Aparicio, I., & Pérez-Soriano, P. (2024). Influence of Mouse Grip Type on Flicking and Tracking Tasks Performance. Applied Sciences, 14(16), 7112. https://doi.org/10.3390/app14167112