Wheat Powdery Mildew Detection with YOLOv8 Object Detection Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Augmentation
2.3. Data Annotation
2.4. Data Preprocessing
2.5. Object Detection Model
2.6. Model Training Hardware
2.7. Model Selection and Training
2.8. Model Evaluation Metrics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Lin, D.; Zhang, Y.; Deng, M.; Chen, Y.; Lv, B.; Li, B.; Lei, Y.; Wang, Y.; Zhao, L.; et al. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 2022, 602, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Luo, Y.; Zheng, Y.; Duan, X.; Zhou, Y. Detection of latent infection of wheat leaves caused by Blumeria graminis f. sp. tritici using nested PCR. J. Phytopathol. 2010, 158, 227–235. [Google Scholar] [CrossRef]
- Ateş Sönmezoğlu, Ö.; Yıldırım, A.; Türk, Ü.; Yanar, Y. Identification of Powdery Mildew (Blumeria graminis f. sp. tritici) Resistance in Some Durum Wheat Landraces. Eur. J. Sci. Technol. 2019, 17, 944–950. [Google Scholar] [CrossRef]
- Shin, J.; Chang, Y.K.; Heung, B.; Nguyen-Quang, T.; Price, G.W.; Al-Mallahi, A. A deep learning approach for RGB image-based powdery mildew disease detection on strawberry leaves. Comput. Electron. Agric. 2021, 183, 106042. [Google Scholar] [CrossRef]
- Mavridou, E.; Vrochidou, E.; Papakostas, G.A.; Pachidis, T.; Kaburlasos, V.G. Machine vision systems in precision agriculture for crop farming. J. Imaging 2019, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.H.; Shashank, C.D.; Adithya, N.; Galla, A.; Likeith, B.; Deepak, G. A Comprehensive Survey on Weed Identification in Agriculture using Machine Learning. In Proceedings of the IEEE International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1), Bangalore, India, 21–22 April 2023; pp. 1–6. [Google Scholar]
- Mahmud, M.S.A.; Abidin, M.S.Z.; Emmanuel, A.A.; Hasan, H.S. Robotics and automation in agriculture: Present and future applications. Appl. Model. Simul. 2020, 4, 130–140. [Google Scholar]
- Liu, B.; Bruch, R. Weed detection for selective spraying: A review. Curr. Robot. Rep. 2020, 1, 19–26. [Google Scholar] [CrossRef]
- Das, G.P.; Gould, I.; Zarafshan, P.; Heselden, J.; Badiee, A.; Wright, I.; Pearson, S. Applications of robotic and solar energy in precision agriculture and smart farming. In Solar Energy Advancements in Agriculture and Food Production Systems; Academic Press: Cambridge, MA, USA, 2022; pp. 351–390. [Google Scholar]
- Salazar-Gomez, A.; Darbyshire, M.; Gao, J.; Sklar, E.I.; Parsons, S. Towards practical object detection for weed spraying in precision agriculture. arXiv 2021, arXiv:2109.11048. [Google Scholar]
- Redolfi, J.A.; Felissia, S.F.; Bernardi, E.; Araguás, R.G.; Flesia, A.G. Learning to Detect Vegetation Using Computer Vision and Low-Cost Cameras. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 26–28 February 2020; pp. 791–796. [Google Scholar]
- Alam, M.; Alam, M.S.; Roman, M.; Tufail, M.; Khan, M.U.; Khan, M.T. Real-time machine-learning based crop/weed detection and classification for variable-rate spraying in precision agriculture. In Proceedings of the IEEE 7th International Conference on Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 14–16 April 2020; pp. 273–280. [Google Scholar]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Su, S.; Li, Y.; He, S.; Han, S.; Feng, C.; Ding, C.; Miao, F. Uncertainty quantification of collaborative detection for self-driving. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 5588–5594. [Google Scholar]
- Karbalaie, A.; Abtahi, F.; Sjöström, M. Event detection in surveillance videos: A review. Multimed. Tools Appl. 2022, 81, 35463–35501. [Google Scholar] [CrossRef]
- Li, D.; Su, H.; Jiang, K.; Liu, D.; Duan, X. Fish face identification based on rotated object detection: Dataset and exploration. Fishes 2022, 7, 219. [Google Scholar] [CrossRef]
- Tsuneki, M. Deep learning models in medical image analysis. J. Oral Biosci. 2022, 64, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Ye, X.; Lu, H.; Zheng, X.; Qiu, S.; Liu, Y. Dense convolutional network and its application in medical image analysis. BioMed Res. Int. 2022, 25, 2384830. [Google Scholar] [CrossRef]
- Önler, E. Real time pest detection using YOLOv5. Int. J. Agric. Nat. Sci. 2021, 14, 232–246. [Google Scholar]
- Lee, D.I.; Lee, J.H.; Jang, S.H.; Oh, S.J.; Doo, I.C. Crop Disease Diagnosis with Deep Learning-Based Image Captioning and Object Detection. Appl. Sci. 2023, 13, 3148. [Google Scholar] [CrossRef]
- Habib, M.; Sekhra, S.; Tannouche, A.; Ounejjar, Y. The Identification of Weeds and Crops Using the Popular Convolutional Neural Networks. In Proceedings of the International Conference on Digital Technologies and Applications 2023, Fez, Morocco, 27–28 January 2023; pp. 484–493. [Google Scholar]
- Li, R.; Li, Y.; Qin, W.; Abbas, A.; Li, S.; Ji, R.; Wu, Y.; He, Y.; Yang, J. Lightweight Network for Corn Leaf Disease Identification Based on Improved YOLO v8s. Agriculture 2024, 14, 220. [Google Scholar] [CrossRef]
- Zhong, Z.; Yun, L.; Cheng, F.; Chen, Z.; Zhang, C. Light-YOLO: A Lightweight and Efficient YOLO-Based Deep Learning Model for Mango Detection. Agriculture 2024, 14, 140. [Google Scholar] [CrossRef]
- Zhu, R.; Hao, F.; Ma, D. Research on Polygon Pest-Infected Leaf Region Detection Based on YOLOv8. Agriculture 2023, 13, 2253. [Google Scholar] [CrossRef]
- Susheel, K.S.; Nadu, T.; Rajkumar, R. A Review on Cutting Edge Technologies In Crop Pests And Diseases Detection. J. Data Acquis. Process. 2023, 38, 640. [Google Scholar]
- Cho, S.; Kim, T.; Jung, D.H.; Park, S.H.; Na, Y.; Ihn, Y.S.; Kim, K. Plant growth information measurement based on object detection and image fusion using a smart farm robot. Comput. Electron. Agric. 2023, 207, 107703. [Google Scholar] [CrossRef]
- Ren, G.; Wu, H.; Bao, A.; Lin, T.; Ting, K.C.; Ying, Y. Mobile robotics platform for strawberry temporal–spatial yield monitoring within precision indoor farming systems. Front. Plant Sci. 2023, 14, 1162435. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiao, S.; Kumar, P.; Demir, B. Data-driven few-shot crop pest detection based on object pyramid for smart agriculture. J. Electron. Imaging 2023, 32, 052403. [Google Scholar] [CrossRef]
- Edan, Y.; Adamides, G.; Oberti, R. Agriculture Automation. In Springer Handbook of Automation; Springer: Cham, Switzerland, 2023; pp. 1055–1078. [Google Scholar]
- Wosner, O.; Farjon, G.; Bar-Hillel, A. Object Detection in Agricultural Contexts: A Multiple Resolution Benchmark and Comparison to Human. Comput. Electron. Agric. 2021, 189, 106404. [Google Scholar] [CrossRef]
- Badgujar, C.M.; Poulose, A.; Gan, H. Agricultural Object Detection with You Only Look Once (YOLO) Algorithm: A Bibliometric and Systematic Literature Review. Comput. Electron. Agric. 2024, 223, 109090. [Google Scholar] [CrossRef]
- Ariza-Sentís, M.; Vélez, S.; Martínez-Peña, R.; Baja, H.; Valente, J. Object Detection and Tracking in Precision Farming: A Systematic Review. Comput. Electron. Agric. 2024, 219, 108757. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Mujkic, E.; Christiansen, M.P.; Ravn, O. Object Detection for Agricultural Vehicles: Ensemble Method Based on Hierarchy of Classes. Sensors 2023, 23, 7285. [Google Scholar] [CrossRef]
- Nepal, U.; Eslamiat, H. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs. Sensors 2022, 22, 464. [Google Scholar] [CrossRef]
- Bektaş, J. Evaluation of YOLOv8 Model Series with HOP for Object Detection in Complex Agriculture Domains. Int. J. Pure Appl. Sci. 2024, 10, 162–173. [Google Scholar] [CrossRef]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Huang, Y.; Qian, Y.; Wei, H.; Lu, Y.; Ling, B.; Qin, Y. A Survey of Deep Learning-Based Object Detection Methods in Crop Counting. Comput. Electron. Agric. 2023, 215, 108425. [Google Scholar] [CrossRef]
- Sari, H.; Özcan, O. Soil Properties of The Quarry Areas in Suleymanpaşa-Tekırdag. Alınteri Zirai Bilim. Derg. 2018, 33, 75–83. [Google Scholar] [CrossRef]
- Mgm Turkish State Meteorolgical Service. Available online: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=TEKIRDAG (accessed on 1 August 2024).
- Köycü, N.D. Effect of Fungicides on Spike Characteristics in Winter Wheat Inoculated withFusarium Culmorum. Food Addit. Contam. Part A 2022, 39, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Önler, E. Image augmentation in agriculture using the albumentations library. In New Trends in Agriculture, Forestry and Aquaculture Sciences; Duvar Publishing: Istanbul, Turkey, 2022; pp. 89–104. [Google Scholar]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Tzutalin, D. LabelImg Free Software: MIT License; MIT: Cambridge, MA, USA, 2015. [Google Scholar]
- Wang, G.; Chen, Y.; An, P.; Hong, H.; Hu, J.; Huang, T. UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios. Sensors 2023, 23, 7190. [Google Scholar] [CrossRef] [PubMed]
- Terven, J.; Córdova-Esparza, D.-M.; Romero-González, J.-A. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. Available online: https://openaccess.thecvf.com/content_cvpr_2018/html/Liu_Path_Aggregation_Network_CVPR_2018_paper.html (accessed on 1 August 2024).
- Sen, C.; Singh, P.; Gupta, K.; Jain, A.K.; Jain, A.; Jain, A. UAV Based YOLOV-8 Optimization Technique to Detect the Small Size and High Speed Drone in Different Light Conditions. In Proceedings of the 2nd International Conference on Disruptive Technologies (ICDT), Greater Noida, India, 15–16 March 2024. [Google Scholar] [CrossRef]
- Luo, D.; Xue, Y.; Deng, X.; Yang, B.; Chen, H.; Mo, Z. Citrus Diseases and Pests Detection Model Based on Self-Attention YOLOV8. IEEE Access 2023, 11, 139872–139881. [Google Scholar] [CrossRef]
- Zhang, W. Research on 10 Kinds of Beverage Target Detection Based on YOLOv8. In Proceedings of the IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 15–17 December 2023. [Google Scholar] [CrossRef]
- Liu, M.; Li, R.; Hou, M.; Zhang, C.; Hu, J.; Wu, Y. SD-YOLOv8: An Accurate Seriola Dumerili Detection Model Based on Improved YOLOv8. Sensors 2024, 24, 3647. [Google Scholar] [CrossRef]
- Kocakanat, K.; Serif, T. Turkish Traffic Sign Recognition: Comparison of Training Step Numbers and Lighting Conditions. Avrupa Bilim ve Teknoloji Dergisi 2021, 28, 1469–1475. [Google Scholar] [CrossRef]
- Jiang, P.-T.; Zhang, C.-B.; Hou, Q.; Cheng, M.-M.; Wei, Y. LayerCAM: Exploring Hierarchical Class Activation Maps for Localization. IEEE Trans. Image Process. 2021, 30, 5875–5888. [Google Scholar] [CrossRef]
- Lippi, M.; Bonucci, N.; Carpio, R.F.; Contarini, M.; Speranza, S.; Gasparri, A. A yolo-based pest detection system for precision agriculture. In Proceedings of the IEEE 29th Mediterranean Conference on Control and Automation (MED), Online, 22–25 June 2021; pp. 342–347. [Google Scholar]
- Soeb, M.J.A.; Jubayer, M.F.; Tarin, T.A.; Al Mamun, M.R.; Ruhad, F.M.; Parven, A.; Mubarak, N.M.; Karri, S.L.; Meftaul, I.M. Tea leaf disease detection and identification based on YOLOv7 (YOLO-T). Sci. Rep. 2023, 13, 6078. [Google Scholar] [CrossRef]
- Khan, F.; Zafar, N.; Tahir, M.N.; Aqib, M.; Waheed, H.; Haroon, Z. A mobile-based system for maize plant leaf disease detection and classification using deep learning. Front. Plant Sci. 2023, 14, 1079366. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zhao, L.; Zhao, Y.; Deng, H. Study on Lightweight Model of Maize Seedling Object Detection Based on YOLOv7. Appl. Sci. 2023, 13, 7731. [Google Scholar] [CrossRef]
- Bansal, H.; Grover, A. Leaving reality to imagination: Robust classification via generated datasets. arXiv 2023, arXiv:2302.02503. [Google Scholar]
- Miao, Z.; Yu, X.; Li, N.; Zhang, Z.; He, C.; Li, Z.; Deng, C.; Sun, T. Efficient tomato harvesting robot based on image processing and deep learning. Precis. Agric. 2023, 24, 254–287. [Google Scholar] [CrossRef]
- Khan, I.H.; Liu, H.; Li, W.; Cao, A.; Wang, X.; Liu, H.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W. Early detection of powdery mildew disease and accurate quantification of its severity using hyperspectral images in wheat. Remote Sens. 2021, 13, 3612. [Google Scholar] [CrossRef]
- Xuan, G.; Li, Q.; Shao, Y.; Shi, Y. Early diagnosis and pathogenesis monitoring of wheat powdery mildew caused by blumeria graminis using hyperspectral imaging. Comput. Electron. Agric. 2022, 197, 106921. [Google Scholar] [CrossRef]
- Yako, M.; Yamaoka, Y.; Kiyohara, T.; Hosokawa, C.; Noda, A.; Tack, K.; Spooren, N.; Hirasawa, T.; Ishikawa, A. Video-rate hyperspectral camera based on a CMOS-compatible random array of Fabry–Pérot filters. Nat. Photonics 2023, 17, 218–223. [Google Scholar] [CrossRef]
- Urbieta, M.; Urbieta, M.; Pereyra, M.; Laborde, T.; Villarreal, G.; Del Pino, M. A scalable offline AI-based solution to assist the diseases and plague detection in agriculture. J. Decis. Syst. 2023, 33, 459–476. [Google Scholar] [CrossRef]
- Goyal, L.; Sharma, C.M.; Singh, A.; Singh, P.K. Leaf and spike wheat disease detection & classification using an improved deep convolutional architecture. Inform. Med. Unlocked 2021, 25, 10064. [Google Scholar]
Model | Inference Speed (ms) | Model Size (MB) | mAP50 | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|
YOLOv8n | 0.5 | 6.2 | 0.76 | 0.95 | 0.74 | 0.82 |
YOLOv8s | 1.1 | 22.5 | 0.77 | 0.98 | 0.77 | 0.85 |
YOLOv8m | 2.3 | 52.0 | 0.81 | 0.98 | 0.77 | 0.87 |
YOLOv8l | 3.4 | 87.6 | 0.81 | 0.98 | 0.77 | 0.87 |
YOLOv8x | 5.8 | 136.7 | 0.81 | 0.98 | 0.79 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Önler, E.; Köycü, N.D. Wheat Powdery Mildew Detection with YOLOv8 Object Detection Model. Appl. Sci. 2024, 14, 7073. https://doi.org/10.3390/app14167073
Önler E, Köycü ND. Wheat Powdery Mildew Detection with YOLOv8 Object Detection Model. Applied Sciences. 2024; 14(16):7073. https://doi.org/10.3390/app14167073
Chicago/Turabian StyleÖnler, Eray, and Nagehan Desen Köycü. 2024. "Wheat Powdery Mildew Detection with YOLOv8 Object Detection Model" Applied Sciences 14, no. 16: 7073. https://doi.org/10.3390/app14167073
APA StyleÖnler, E., & Köycü, N. D. (2024). Wheat Powdery Mildew Detection with YOLOv8 Object Detection Model. Applied Sciences, 14(16), 7073. https://doi.org/10.3390/app14167073