Potential Possibilities of Using Peat, Humic Substances, and Sulfurous Waters in Cosmetology
Abstract
:1. Introduction
2. Materials and Methods
3. Peat
3.1. General Characteristics
3.2. Formation and Division of Peats
3.3. Peat Composition
3.4. Pharmacological and Biological Activity of Peat and Humic Substances
3.5. Potential Uses of Peat and Humic Compounds
3.5.1. Types of Peat Preparations
- Peat in Cosmetics
- Humic Compounds in Cosmetics
3.5.2. Types of Peat Treatments
4. Medicinal Waters
4.1. General Characteristics
4.2. Sulphurous Water—Mechanism of Action on the Skin
4.3. Biological Activity of Sulphurous Water
4.3.1. Anti-Inflammatory Activity
4.3.2. Antioxidant Activity
4.3.3. Antimicrobial Activity
4.4. Dermatological and Cosmetological Uses of Water
4.4.1. Acne
4.4.2. Psoriasis
4.4.3. Atopic Dermatitis
4.4.4. Skin Irritations
4.4.5. Wounds
4.5. Sulphurous Waters in Cosmetics
5. Potential Cosmetic Combination with Sulfurous Water and Peat
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Munteanu, C.; Rotariu, M.; Dogaru, G.; Ionescu, E.V.; Ciobanu, V.; Onose, G. Mud therapy and rehabilitation—Scientific relevance in the last six years (2015–2020) systematic literature review and meta-analysis based on the PRISMA Paradigm. Balneo PRM Res. J. 2021, 12, 1–15. [Google Scholar] [CrossRef]
- Carretero, M.I. Clays in pelotherapy. A review. Part I: Mineralogy, chemistry, physical and physicochemical properties. Appl. Clay Sci. 2020, 189, 105526. [Google Scholar] [CrossRef]
- Gomes, C.; Carretero, M.I.; Pozo, M.; Maraver, F.; Cantista, P.; Armijo, F.; Legido, J.L.; Teixeira, F.; Rautureau, M.; Delgado, R. Peloids and pelotherapy: Historical evolution, classification and glossary. Appl. Clay Sci. 2013, 75–76, 28–38. [Google Scholar] [CrossRef]
- Munteanu, C.; Dogaru, G.; Rotariu, M.; Onose, G. Therapeutic gases used in balneotherapy and rehabilitation medicine—Scientific relevance in the last ten years (2011–2020)—Synthetic literature review. Balneo PRM Res. J. 2021, 12, 111–122. [Google Scholar] [CrossRef]
- Liu, J.K. Natural products in cosmetics. Nat. Prod. Bioprospect. 2022, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Devkate, G.V.; Tate, S.S.; Deokate, S.B.; Bhujbal, A.S.; Tupe, A.P.; Patil, R.N. Hydrotherapy: A new trend in disease treatment. Int. J. Sci. Res. Methodol. 2016, 5, 117–135. [Google Scholar]
- Gomes, C.d.S.F. Healing and edible clays: A review of basic concepts, benefits and risks. Environ. Geochem. Health 2018, 40, 1739–1765. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.S.; Islam, M.D.; Akter, K.; Sarkar, M.A.S.; Roy, T.; Rahman, S.T. Therapeutic Aspects of Hydrotherapy: A Review. Bangladesh J. Med. 2021, 32, 138–141. [Google Scholar] [CrossRef]
- International Peatland Society. Available online: https://peatlands.org (accessed on 18 July 2024).
- Trusek-Holownia, A.; Ciereszko, J. Solids removal from balneo peat extracts. Desalination Water Treat. 2018, 114, 69–72. [Google Scholar] [CrossRef]
- Topcuoğlu, B.; Turan, M. Introductory Chapter: Introduction to Peat. In Peat; Topcuoğlu, B., Turan, M., Eds.; IntechOpen Limited: London, UK, 2018. [Google Scholar]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Microalgal peloids for cosmetic and wellness uses. Mar. Drugs 2021, 19, 666. [Google Scholar] [CrossRef]
- Rydin, H.; Jeglum, J.K. The Biology of Peatlands. In Biology of Habitats Series, 2nd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- De Melo, B.A.G.; Motta, F.L.; Santana, M.H.A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C 2016, 62, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Van Rensburg, C.E.J.; Van Straten, A.; Dekker, J. An in vitro investigation of the antimicrobial activity of oxifulvic acid. J. Antimicrob. Chemother. 2000, 46, 853. [Google Scholar] [CrossRef] [PubMed]
- Gadzhieva, N.Z.; Tsoĭ, E.P.; Turovskaia, S.I.; Ammosova, I. The antibacterial activity of a humic preparation made from the therapeutic peat mud of the Dzalal Abad Deposit in Kirghizia. Nauchnye Doki Vyss. Shkoly Biol. Nauk. 1991, 10, 109–113. [Google Scholar]
- Neyts, J.; Snoeck, R.; Wutzler, P.; Cushman, M.; Klocking, R.; Helbig, B.; Wang, P.; De Clercq, E. Poly(hydroxy)carboxylates as selective inhibitors of cytomegalovirus and Herpes simplex virus replication. Antivir. Chem. Chemother. 1992, 3, 215–222. [Google Scholar] [CrossRef]
- Schneider, J.; Weis, R.; Männer, C.; Kary, B.; Werner, A.; Seubert, B.J.; Riede, U.N. Inhibition of HIV-1 in cell culture by synthetic humate analogues derived from hydroquinone: Mechanism of inhibition. Virology 1996, 218, 389–395. [Google Scholar] [CrossRef]
- Van Rensburg, C.E.J.; Dekker, J.; Weis, R.; Smith, T.L.; Janse Van Rensburg, E.; Schneider, J. Investigation of the Anti-HIV properties of oxihumate. Chemotherapy 2002, 48, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Zykova, M.V.; Schepetkin, I.A.; Belousov, M.V.; Krivoshchekov, S.V.; Logvinova, L.A.; Bratishko, K.A.; Yusubov, M.S.; Romanenko, S.V.; Quinn, M.T. Physicochemical characterization and antioxidant activity of humic acids isolated from peat of various origins. Molecules 2018, 23, 753. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Xie, G.; Jutila, M.A.; Quinn, M.T. Complement-fixing activity of fulvic acid from shilajit and other natural sources. Phytother. Res. 2009, 23, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Trofimova, E.S.; Zykova, M.V.; Ligacheva, A.A.; Sherstoboev, E.Y.; Zhdanov, V.V.; Belousov, M.V.; Yusubov, M.S.; Krivoshchekov, S.V.; Danilets, M.G.; Dygai, A.M. Effects of humic acids isolated from peat of various origin on in vitro production of nitric oxide: A screening study. Bull. Exp. Biol. Med. 2016, 161, 687–692. [Google Scholar] [CrossRef]
- Trofimova, E.S.; Zykova, M.V.; Ligacheva, A.A.; Sherstoboev, E.Y.; Zhdanov, V.V.; Belousov, M.V.; Yusubov, M.S.; Krivoshchekov, S.V.; Danilets, M.G.; Dygai, A.M. Influence of humic acids extracted from peat by different methods on functional activity of macrophages in vitro. Bull. Exp. Biol. Med. 2017, 162, 741–745. [Google Scholar] [CrossRef]
- Van Rensburg, C.E.J. The antiinflammatory properties of humic substances: A mini review. Phytother. Res. 2015, 29, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Z.; Peng, A.; Hou, J.; Xin, W. Interaction between fulvic acids of different origins and active oxygen radicals. Sci. China C Life Sci. 1996, 39, 267–275. [Google Scholar] [PubMed]
- Avvakumova, N.P.; Gerchikov, A.Y.; Khairullina, V.R.; Zhdanova, A.V. Antioxidant properties of humic substances isolated from peloids. Pharm. Chem. J. 2011, 45, 192–193. [Google Scholar] [CrossRef]
- Aeschbacher, M.; Graf, C.; Schwarzenbach, R.P.; Sander, M. Antioxidant properties of humic substances. Environ. Sci. Technol. 2012, 46, 4916–4925. [Google Scholar] [CrossRef] [PubMed]
- Shang, E.; Li, Y.; Niu, J.; Zhou, Y.; Wang, T.; Crittenden, J.C. Relative importance of humic and fulvic acid on ROS generation, dissolution, and toxicity of sulfide nanoparticles. Water Res. 2017, 124, 595–604. [Google Scholar] [CrossRef] [PubMed]
- García-Villén, F.; Sánchez-Espejo, R.; Carazo, E.; Borrego-Sánchez, A.; Aguzzi, C.; Cerezo, P.; Viseras, C. Characterisation of Andalusian peats for skin health care formulations. Appl. Clay Sci. 2018, 160, 201–205. [Google Scholar] [CrossRef]
- Craft, C. Creating and Restoring Wetlands: From Theory to Practice, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Kosińska, B.; Grabowski, M.L. Sulfurous balneotherapy in Poland: A vignette on history and contemporary use. Adv. Exp. Med. Biol. 2019, 1211, 51–59. [Google Scholar]
- Morandini, M.C.; Kain, G.; Eckardt, J.; Petutschnigg, A.; Tippner, J. Physical-mechanical properties of peat moss (sphagnum) insulation panels with bio-based adhesives. Materials 2022, 15, 3299. [Google Scholar] [CrossRef] [PubMed]
- Baran, A. Characterization of carex peat using extinction values of humic acids. Bioresour. Technol. 2002, 85, 99–101. [Google Scholar] [CrossRef]
- Andriesse, J.P. Nature and Management of Tropical Peat Soils; FAO Soils Bulletin: Rome, Italy, 1988. [Google Scholar]
- Peña-Méndez, E.M.; Havel, J.; Patočka, J. Humic substance-compounds of still unknown structure: Applications in agriculture, industry, environment, and biomedicine. J. Appl. Biomed. 2005, 3, 13–24. [Google Scholar] [CrossRef]
- Drobnik, M.; Latour, T. The influence of thermal and chemical processes on the content and structure of humic acids—The basic ingredient of peat preparations. Rocz. PZH 2011, 62, 453–462. [Google Scholar]
- Yuan, W.; Zydney, A.L. Humic acid fouling during microfiltration. J. Membr. Sci. 1999, 157, 1–12. [Google Scholar] [CrossRef]
- Bozkurt, S.; Lucisano, M.; Moreno, L.; Neretnieks, I. Peat as a potential analogue for the long-term evolution in landfills. Earth Sci. Rev. 2001, 53, 95–147. [Google Scholar] [CrossRef]
- Schepetkin, I.; Khlebnikov, A.; Kwon, B.S. Medical drugs from humus matter: Focus on mumie. Drug Dev. Res. 2002, 57, 140–159. [Google Scholar] [CrossRef]
- Pukhova, G.G.; Druzhina, N.A.; Stepchenko, L.M.; Chebotarev, E.E. Effect of sodium humate on animals irradiated with lethal doses. Radiobiologiia 1987, 27, 650–653. [Google Scholar] [PubMed]
- Belousov, M.V.; Akhmedzhanov, R.R.; Zykova, M.V.; Gur’ev, A.M.; Yusubov, M.S. Hepatoprotective properties of native humic acids isolated from lowland peat of Tomsk Region. Pharm. Chem. J. 2014, 48, 249–252. [Google Scholar] [CrossRef]
- Ozkan, A.; Sen, H.M.; Sehitoglu, I.; Alacam, H.; Guven, M.; Aras, A.B.; Akman, T.; Silan, C.; Cosar, M.; Karaman, H.I.O. Neuroprotective effect of humic acid on focal cerebral ischemia injury: An experimental study in rats. Inflammation 2015, 38, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Belousov, M.V.; Akhmedzhanov, R.R.; Zykova, M.V.; Vasil’ev, K.Y.; Yusubov, M.S. Effect of native humic acids from Tomsk Region Lowland peat on mitochrondrial oxidative phosphorylation under hypoxic conditions. Pharm. Chem. J. 2015, 49, 250–254. [Google Scholar] [CrossRef]
- Belousov, M.V.; Akhmedzhanov, R.R.; Zykova, M.V.; Arbuzov, A.N.; Gur’ev, A.M.; Yusubov, M.S. Antihypoxic activity of native humic acids of Tomsk Lowland peat. Pharm. Chem. J. 2014, 48, 97–99. [Google Scholar] [CrossRef]
- Akbas, A.; Silan, C.; Gulpinar, M.T.; Sancak, E.B.; Ozkanli, S.S.; Cakir, D.U. Renoprotective effect of humic acid on renal ischemia-reperfusion injury: An experimental study in rats. Inflammation 2015, 38, 2042–2048. [Google Scholar] [CrossRef]
- Zykova, M.V.; Belousov, M.V.; Lasukova, T.V.; Gorbunov, A.S.; Logvinova, L.A.; Dygai, A.M. Cardiovascular effects of high-molecular-weight compounds of humic nature. Bull. Exp. Biol. Med. 2017, 163, 206–209. [Google Scholar] [CrossRef]
- Tolpa, S.; Gersz, T.; Ritter, S.; Kukla, R.; Skrzyszewska, M.; Tomków, S. Peat-Derived Bioactive Products and Pharmaceutical and Cosmetic Compositions Containing Them. Patent WO1992016216A1, 1 October 1992. [Google Scholar]
- Jankowski, A.; Nienartowicz, B.; Polańska, B.; Lewandowicz-Uszyńska, A. A randomised, double-blind study on the efficacy of Tołpa Torf Preparation (TTP) in the treatment of recurrent respiratory tract infections. Arch. Immunol. Ther. Exp. 1993, 41, 95–97. [Google Scholar]
- Madej, J.A.; Kuryszko, J.; Garbuliński, T. The influence of long-term administration of Tołpa Peat Preparation on immune reactivity in mice. I. Morphological changes in the thymus. Acta Pol. Pharm. 1993, 50, 397–404. [Google Scholar] [PubMed]
- Madej, J.A.; Obmińska-Domoradzka, B.; Garbuliński, T. The influence of long-term administration of Tołpa Peat Preparation on immune reactivity in mice. II. The effect of intermittent TPP administration on the morphological picture of lymphatic organs. Acta Pol. Pharm. 1993, 50, 405–408. [Google Scholar] [PubMed]
- Drobnik, J.; Stebel, A. Central European ethnomedical and officinal uses of peat, with special emphasis on the Tołpa peat preparation (TPP): An historical review. J. Ethnopharmacol. 2020, 246, 112248. [Google Scholar] [CrossRef]
- Obmiñska-Domoradzka, B.; Stefañska-Joñca, M. The Effect of a peat-based preparation on mitogen-induced proliferation of thymocytes in non-treated and hydrocortisone-suppressed mice. Phytomedicine 2001, 8, 184–192. [Google Scholar] [CrossRef]
- Inglot, A.D.; Zielinska-Jenczylik, J.; Piasecki, E. Tolpa Torf Preparation (TTP*) induces interferon and tumor necrosis factor production in human peripheral blood leukocytes. Arch. Immunol. Ther. Exp. 1993, 41, 73–80. [Google Scholar]
- Çalışır, M.; Akpınar, A.; Poyraz, Ö.; Göze, F.; Çınar, Z. The histopathological and morphometric investigation of the effects of systemically administered humic acid on alveolar bone loss in ligature-induced periodontitis in rats. J. Periodontal Res. 2016, 51, 499–507. [Google Scholar] [CrossRef]
- Wu, C.; Lyu, A.; Shan, S. Fulvic acid attenuates atopic dermatitis by downregulating CCL17/22. Molecules 2023, 28, 3507. [Google Scholar] [CrossRef]
- Verrillo, M.; Parisi, M.; Savy, D.; Caiazzo, G.; Di Caprio, R.; Luciano, M.A.; Cacciapuoti, S.; Fabbrocini, G.; Piccolo, A. Antiflammatory activity and potential dermatological applications of characterized humic acids from a lignite and a green compost. Sci. Rep. 2022, 12, 2152. [Google Scholar] [CrossRef]
- Karadirek, Ş.; Kanmaz, N.; Balta, Z.; Demirçivi, P.; Üzer, A.; Hizal, J.; Apak, R. Determination of total antioxidant capacity of humic acids using CUPRAC, Folin-Ciocalteu, Noble Metal Nanoparticle- and Solid-Liquid Extraction-Based Methods. Talanta 2016, 153, 120–129. [Google Scholar] [CrossRef]
- Klein, O.I.; Kulikova, N.A.; Konstantinov, A.I.; Zykova, M.V.; Perminova, I.V. A Systematic study of the antioxidant capacity of humic substances against peroxyl radicals: Relation to structure. Polymers 2021, 13, 3262. [Google Scholar] [CrossRef] [PubMed]
- Tarnawski, M.; Depta, K.; Grejciun, D.; Szelepin, B. HPLC determination of phenolic acids and antioxidant activity in concentrated peat extract—A natural immunomodulator. J. Pharm. Biomed. Anal. 2006, 41, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Karpińska, M.; Kapała, J.; Raciborska, A.; Kulesza, G.; Milewska, A.; Mnich, S. Radioactivity of natural medicinal preparations contained extracts from peat mud available in retail trade used externally. Nat. Prod. Res. 2017, 31, 1935–1939. [Google Scholar] [CrossRef] [PubMed]
- Wollina, U. Peat: A natural source for dermatocosmetics and dermatotherapeutics. J. Cutan. Aesthet. Surg. 2009, 2, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Jooné, G.K.; Dekker, J.; Rensburg, C.E.J. Investigation of the immunostimulatory properties of oxihumate. Z. Naturforsch.—Sect. C J. Biosci. 2003, 58, 263–267. [Google Scholar] [CrossRef]
- Swidsinski, A.; Dörffel, Y.; Loening-Baucke, V.; Gille, C.; Reißhauer, A.; Göktas, O.; Krüger, M.; Neuhaus, J.; Schrödl, W. Impact of humic acids on the colonic microbiome in healthy volunteers. World J. Gastroenterol. 2017, 23, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Brzozowski, T.; Dembiński, A.; Konturek, S. Influence of Tołpa peat preparation on gastroprotection and on gastric and duodenal ulcers. Acta Pol. Pharm. 1994, 51, 103–107. [Google Scholar] [PubMed]
- Lebedeva, K.; Cherkashina, D.; Tykhomyrova, T.; Moiseev, V.; Lebedev, V. Research of biologically active polymeric hydrogel transdermal materials. In Lecture Notes in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Tołpa. Available online: https://tolpa.pl/ (accessed on 28 June 2024).
- Neogenesis. Available online: https://www.neogenesis.com/ (accessed on 28 June 2024).
- Lumene. Available online: https://lumene.com/ (accessed on 28 June 2024).
- Dr Duda. Available online: https://www.drduda.pl/ (accessed on 28 June 2024).
- Bodyblitzspa. Available online: https://bodyblitzspa.com/ (accessed on 28 June 2024).
- Misoli. Available online: https://jtcosmetic.tradekorea.com (accessed on 28 June 2024).
- Epielle. Available online: https://epielle.com/ (accessed on 28 June 2024).
- Dr. Hauschka. Available online: https://www.drhauschka.co.uk/ (accessed on 28 June 2024).
- LaLe. Available online: https://la-le.pl/ (accessed on 28 June 2024).
- Sabbatical. Available online: https://sabbaticalbeauty.com/ (accessed on 28 June 2024).
- Bingospa. Available online: https://bingospa.eu/ (accessed on 28 June 2024).
- Sulphur. Available online: https://sklep.sulphur.com.pl/ (accessed on 28 June 2024).
- Gorvita. Available online: https://www.gorvita.com.pl/ (accessed on 28 June 2024).
- Humic Acid. Available online: https://cosmetics.specialchem.com/product/i-cd-formulation-humic-acid (accessed on 26 June 2024).
- Osmosis. Available online: https://osmosisbeauty.com/products/infuse (accessed on 26 June 2024).
- Spoiled Child. Available online: https://www.spoiledchild.com/hair/serums/a22-biotin-boost-hair-scalp-serum (accessed on 26 June 2024).
- Beer, A.M.; Junginger, H.E.; Lukanov, J.; Sagorchev, P. Evaluation of the permeation of peat substances through human skin in vitro. Int. J. Pharm. 2003, 253, 169–175. [Google Scholar] [CrossRef]
- Orru, M.; Übner, M.; Orru, H. Chemical properties of peat in three peatlands with balneological potential in Estonia. Estonian J. Earth Sci. 2011, 60, 43–49. [Google Scholar] [CrossRef]
- Wollina, U. The response of erythematous rosacea to ondansetron. Br. J. Dermatol. 1999, 140, 561–562. [Google Scholar] [CrossRef]
- Shanler, S.; Ondo, A. Successful treatment of the erythema and flushing of rosacea using a topically applied selective A1-adrenergic receptor agonist, oxymetazoline. Arch. Dermatol. 2007, 143, 1369–1371. [Google Scholar] [CrossRef]
- Muela, A.; García-Bringas, J.M.; Arana, I.; Barcina, I. Humic materials offer photoprotective effect to Escherichia coli exposed to damaging luminous radiation. Microb. Ecol. 2000, 40, 336–344. [Google Scholar] [CrossRef]
- Klavins, M.; Purmalis, O. Surface activity of humic acids depending on their origin and humification degree. Proc. Latv. Acad. Sci. Sect. B Nat. Exact. Appl. Sci. 2014, 67, 493–499. [Google Scholar]
- Silamikele, B.; Ramata-Stunda, A.; Muiznieks, I. Method for Extraction of Peat Active Substances and Use of Their Combination in Skin Regenerating Cosmetic Formulations. Patent EP2878342A1, 3 June 2015. [Google Scholar]
- Kallio, H.; Korteniemi, V.M.; Tuomasjukka, S.; Määttä, P.; Yang, B.; Judin, V.P. Method of Extract Composition Control in Peat Extraction, Peat Extract, and Use of Peat Extract. Patent EP1567242A1, 31 August 2005. [Google Scholar]
- Bastos, C.M.; Rocha, F.; Gomes, N.; Marinho-Reis, P. The challenge in combining pelotherapy and electrotherapy (iontophoresis) in one single therapeutic modality. Appl. Sci. 2022, 12, 1509. [Google Scholar] [CrossRef]
- Maraver, F.; Armijo, F.; Fernandez-Toran, M.A.; Armijo, O.; Ejeda, J.M.; Vazquez, I.; Corvillo, I.; Torres-Piles, S. Peloids as thermotherapeutic agents. Int. J. Environ. Res. Public Health 2021, 18, 1965. [Google Scholar] [CrossRef] [PubMed]
- Stec, A.; Skorupińska, A. Application of thermotherapy in beauty parlours and SPA centers. Kosmetol. Estet. 2017, 6, 57–62. [Google Scholar]
- Matuszewska, S.; Faruga-Lewicka, W.; Kardas, M. The use of mud in cellulite reduction. Case raport. Aesth Cosmetol. Med. 2024, 13, 59–63. [Google Scholar] [CrossRef]
- Tateo, F.; Ravaglioli, A.; Andreoli, C.; Bonina, F.; Coiro, V.; Degetto, S.; Giaretta, A.; Orsini, A.M.; Puglia, C.; Summa, V. The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl. Clay Sci. 2009, 44, 83–94. [Google Scholar] [CrossRef]
- Veniale, F.; Bettero, A.; Jobstraibizer, P.G.; Setti, M. Thermal Muds: Perspectives of innovations. Appl. Clay Sci. 2007, 36, 141–147. [Google Scholar] [CrossRef]
- Ferrand, T.; Yvon, J. Thermal properties of clay pastes for pelotherapy. Appl. Clay Sci. 1991, 6, 21–38. [Google Scholar] [CrossRef]
- Groot, S. Thermodynamics of Irreversible Processes; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Varga, C. Problems with classification of Spa waters used in balneology. Health 2010, 2, 1260–1263. [Google Scholar] [CrossRef]
- Gambari, L.; Grigolo, B.; Filardo, G.; Grassi, F. Sulfurous thermal waters stimulate the osteogenic differentiation of human mesenchymal stromal cells—An in vitro study. Biomed. Pharmacother. 2020, 129, 110344. [Google Scholar] [CrossRef] [PubMed]
- Marrota, D.; Sica, C. Composizione e Classificazione Delle Acque Minerali Italiane. Ann. Chim. Appl. 1933, 23, 245–247. [Google Scholar]
- Sanghi, T.; Alurua, N.R. Thermal Noise in Confined Fluids. J. Chem. Phys. 2014, 141, 1–9. [Google Scholar] [CrossRef]
- List of Natural Mineral Waters Recognized by Member States, United Kingdom (Nothern Ireland) and EEA Countries. Available online: https://food.ec.europa.eu/safety/labelling-and-nutrition/natural-mineral-waters-and-spring-water_en (accessed on 21 July 2024).
- Wątor, K. Hydrogeochemical processes in sulphurous waters used in balneotherapy. Water Resour. Ind. 2024, 31, 100–248. [Google Scholar] [CrossRef]
- Carbajo, J.M.; Maraver, F. Sulphurous mineral waters: New applications for health. Evid.-Based Complement. Altern. Med. 2017, 2017, 8034084. [Google Scholar] [CrossRef] [PubMed]
- Coavoy-Sánchez, S.A.; Costa, S.K.P.; Muscará, M.N. Hydrogen sulfide and dermatological diseases. Br. J. Pharmacol. 2020, 177, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kim, H.J.; Lee, M.; Jin, S.H.; Hong, S.H.; Ahn, S.; Kim, S.O.; Shin, D.W.; Lee, S.T.; Noh, M. Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol. Appl. Pharmacol. 2016, 310, 185–194. [Google Scholar] [CrossRef]
- Xie, X.; Dai, H.; Zhuang, B.; Chai, L.; Xie, Y.; Li, Y. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes. Biochem. Biophys. Res. Commun. 2016, 472, 437–443. [Google Scholar] [CrossRef]
- Gobbi, G.; Ricci, F.; Malinverno, C.; Carubbi, C.; Pambianco, M.; Panfilis, G.D.; Vitale, M.; Mirandola, P. Hydrogen sulfide impairs keratinocyte cell growth and adhesion inhibiting mitogen-activated protein kinase signaling. Lab. Investiga. 2009, 89, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Kutz, J.L.; Greaney, J.L.; Santhanam, L.; Alexander, L.M. Evidence for a functional vasodilatatory role for hydrogen sulphide in the human cutaneous microvasculature. J. Physiol. 2015, 593, 2121–2129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, L.; An, T.; Xian, M.; Luckanagul, J.A.; Su, Z.; Lin, Y.; Wang, Q. A Hydrogen sulfide-releasing alginate dressing for effective wound healing. Acta Biomater. 2020, 104, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chen, D.D.; Sun, X.; Xie, H.H.; Yuan, H.; Jia, W.P.; Chen, A.F. Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetes. Diabetes 2014, 63, 1763–1778. [Google Scholar] [CrossRef]
- Popović, T.; Amidžić, L.; Čeko, M.; Marković, S. Effect of hydrogen sulphide containing mineral water on experimental osteoporosis in rats. Scr. Medica 2022, 53, 291–297. [Google Scholar] [CrossRef]
- Fioravanti, A.; Giannitti, C.; Iacoponi, F.; Galeazzi, M. Efficacy of balneotherapy on pain, function and quality of life in patients with osteoarthritis of the knee. Int. J. Biometeorol. 2012, 56, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Balogh, Z.; Ördögh, J.; Gász, A.; Német, L.; Bender, T. Effectiveness of balneotherapy in chronic low back pain—A randomized single-blind controlled follow-up study. Forsch. Komplementarmed. Klass. Naturheilkd. 2005, 12, 196–201. [Google Scholar] [CrossRef]
- Sen, N. Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J. Mol. Biol. 2017, 429, 543–561. [Google Scholar] [CrossRef]
- Awadh, S.M.; Al-Ghani, S.A. Assessment of sulfurous springs in the West of Iraq for balneotherapy, drinking, irrigation and aquaculture purposes. Environ. Geochem. Health 2014, 36, 359–373. [Google Scholar] [CrossRef]
- Gálvez Galve, J.J.; Peiró, P.S.; Lucas, M.O.; Torres, A.H.; Gil, E.S.; Pérez, M.B. Quality of Life and Assessment after Local Application of Sulphurous Water in the Home Environment in Patients with Psoriasis Vulgaris: A Randomised Placebo-Controlled Pilot Study. Eur. J. Integr. Med. 2012, 4, e213–e218. [Google Scholar] [CrossRef]
- Bajgai, J.; Fadriquela, A.; Ara, J.; Begum, R.; Ahmed, F.; Kim, C.; Kim, S.; Shim, K.; Lee, K. Balneotherapeutic Effects of High Mineral Spring Water on the Atopic Dermatitis-like Inflammation in Hairless Mice via Immunomodulation and Redox Balance. BMC Complement. Altern. Med. 2017, 17, 481. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.O.; Costa, P.C.; Bahia, M.F. Effect of São Pedro Do Sul Thermal Water on Skin Irritation. Int. J. Cosmet. Sci. 2010, 32, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Faga, A.; Nicoletti, G.; Gregotti, C.; Finotti, V.; Nitto, A.; Gioglio, L. Effects of thermal water on skin regeneration. Int. J. Mol. Med. 2012, 29, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Kolluru, G.K.; Shackelford, R.E.; Shen, X.; Dominic, P.; Kevil, C.G. Sulfide regulation of Cardiovascular Function in Health and Disease. Nat. Rev. Cardiol. 2023, 20, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Williams, K.J.; Borén, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis. Circulation 2007, 116, 1832–1844. [Google Scholar] [CrossRef] [PubMed]
- Carubbi, C.; Masselli, E.; Calabrò, E.; Bonati, E.; Galeone, C.; Andreoli, R.; Goldoni, M.; Corradi, M.; Sverzellati, N.; Pozzi, G.; et al. Sulphurous thermal water inhalation impacts respiratory metabolic parameters in heavy smokers. Int. J. Biometeorol. 2019, 63, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Salami, A.; Dellepiane, M.; Crippa, B.; Mora, F.; Guastini, L.; Jankowska, B.; Mora, R. Sulphurous water inhalations in the prophylaxis of recurrent upper respiratory tract infections. Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 1717–1722. [Google Scholar] [CrossRef]
- Constantino, M. He Rhinogenic Deafness and SPA Therapy: Clinical-Experimental Study. Clin. Ther. 2008, 159, 311–315. [Google Scholar]
- Karagülle, M.Z.; Karagülle, M.; Kılıç, S.; Sevinç, H.; Dündar, C.; Türkoğlu, M. In Vitro evaluation of natural thermal mineral waters in human keratinocyte cells: A preliminary study. Int. J. Biometeorol. 2018, 62, 1657–1661. [Google Scholar] [CrossRef]
- Prandelli, C.; Parola, C.; Buizza, L.; Delbarba, A.; Marziano, M.; Salvi, V.; Zacchi, V.; Memo, M.; Sozzani, S.; Calza, S.; et al. Sulphurus Thermal Water Increases the Release of the Anti-Inflammatory Cytokine IL-10 and Modulates Antioxidant Enzyme Activity. Int. J. Immunopathol. Pharmacol. 2013, 26, 633–646. [Google Scholar] [CrossRef]
- Altaany, Z.; Alkaraki, A.; Abu-siniyeh, A.; Al Momani, W.; Taani, O. Evaluation of antioxidant status and oxidative stress markers in thermal sulfurous springs residents. Heliyon 2019, 5, e02885. [Google Scholar] [CrossRef]
- Ekmekcioglu, C.; Strauss-Blasche, G.; Holzer, F.; Marktl, W. Effect of sulfur baths on antioxidative defense systems, peroxide concentrations and lipid levels in patients with degenerative osteoarthritis. Forsch. Komplementarmed. Klass. Naturheilkd. 2002, 9, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Braga, P.C.; Ceci, C.; Nappi, G. The Antioxidant activity of sulphurous thermal water protects against oxidative DNA damage: A comet assay investigation. Drug Res. 2013, 63, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Giampaoli, S.; Valeriani, F.; Gianfranceschi, G.; Vitali, M.; Delfini, M.; Festa, M.R.; Bottari, E.; Romano Spica, V. Hydrogen sulfide in thermal spring waters and its action on bacteria of human origin. Microchem. J. 2013, 108, 210–214. [Google Scholar] [CrossRef]
- Gupta, A.K.; Nicol, K. The use of sulfur in dermatology. J. Drugs Dermatol. 2004, 3, 427–431. [Google Scholar] [PubMed]
- Oliveira, A.; Vaz, C.; Silva, A.; Ferreira, S.S.; Correia, S.; Ferreira, R.; Breitenfeld, L.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R.; Perreira, C.; et al. Chemical signature and antimicrobial activity of Central Portuguese Natural Mineral Waters against selected skin pathogens. Environ. Geochem. Health 2020, 42, 2039–2057. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Vaz, C.V.; Silva, A.; Correia, S.; Ferreira, R.; Breitenfeld, L.; Martinez-de-oliveira, J.; Palmeira-de-Oliveira, R.; Pereira, C.; Cruz, M.T.; et al. In Vitro evaluation of potential benefits of a silica-rich thermal water (Monfortinho Thermal Water ) in hyperkeratotic skin conditions. Int. J. Biometeorol. 2020, 64, 1957–1968. [Google Scholar] [CrossRef]
- Boros, M.; Kemény, Á.; Sebok, B.; Bagoly, T.; Perkecz, A.; Petoházi, Z.; Maász, G.; Schmidt, J.; Márk, L.; László, T.; et al. Sulphurous medicinal waters increase somatostatin release: It is a possible mechanism of anti-inflammatory effect of balneotherapy in psoriasis. Eur. J. Integr. Med. 2013, 5, 109–118. [Google Scholar] [CrossRef]
- SPA Cottage. Available online: https://spa-cottage-limited.myshopify.com/ (accessed on 4 July 2024).
- BALNEOkosmetyki. Available online: https://balneokosmetyki.pl (accessed on 4 July 2024).
- WIENIEC ZDROJ. Available online: https://sklep.uzdrowisko-wieniec.pl (accessed on 4 July 2024).
Features of the Peat Bog | Subtype of Peat Bogs | |
---|---|---|
Low-Moor Sphagnum Peat | High-Moor Sphagnum Peat | |
Water supply | groundwater, lake water | rainwater only |
Nutrients | high content | low content |
Water capacity | moderate | very large |
Plant species’ composition | rich | poor |
Dominant ingredient | vascular plants | sphagnum mosses |
pH | neutral to acidic | strongly acidic |
Content of organic parts in dry matter | 95% | 75% |
Area of occurrence in Poland | 6.5% | 89% |
Other | high water absorption and sedimentation volume, high sorption properties, low thermal conductivity |
Chemical Properties | Physical Properties |
---|---|
Composition (organic and mineral compounds) Nitrogen Phosphorus Sulfur CaCO3-free lime Trace elements | Water management Water retention Available water content Hydraulic conductivity Sater holding capacity |
pH | Bulk-density |
Organic carbon | Porosity |
Cation exchange capacity | Irreversible drying |
Swelling and shrinking |
Organic compounds | Humic compounds: | humic acids fulvic acids humins |
Bitumens: | resins waxes steroids | |
Others: | monosaccharides and their derivatives (amino sugars, uronic acids, aldonic acids) oligosaccharides (sucrose, lactose) polysaccharides (cellulose, hemicellulose, starch) proteins pectins lignin lipids hemicellulose cellulose polyphenols | |
Small amounts: | nucleic acids, pigments, alkaloids, vitamins (mainly of the B group) | |
Microflora: | aerobic and anaerobic bacteria fungi | |
Inorganic compounds | Chlorides Sulfates Bicarbonates Calcium Magnesium Sodium Potassium Aluminum | Iron Manganese Copper Cobalt Zinc Iodine Fluorine Bromine |
Producer | Country of Origin | Trade Name | Cosmetic Form | Type of Mud in the Cosmetic Composition (INCI) | Properties of the Cosmetic According to the Producer | Ref. |
---|---|---|---|---|---|---|
NeoGenesis | United States | Fresh Face | Mask | Peat | Rejuvenation Gentle exfoliation No irritation | [67] |
Lumene | Finland | Nutri-Recharging | Cleanser in Foam | Peat | Purification | [68] |
Dr Duda | Poland | Mud shower gel | Shower Gel | Peat | Purification Strengthening the skin Skin nourishment | [69] |
Body blitz | Canada | Eucalyptus Mineral Scrub | Scrub | Peat | Circulation stimulation Exfoliation Improved appearance | [70] |
Misoli | Korea | Shining Care Black Pearl | Eye Patch | Peat Water | Reduction in dark circles under the eyes Reduction in swelling Smoothing wrinkles | [71] |
Epielle K-Beauty | Korea | Deep Pore Charcoal | Cleanser | Peat Water | Deep cleansing Detoxification Energizing the skin | [72] |
Dr Hauschka | Germany | Moor Lavender Calming Bath Essence | Bath Essence | Peat Moss Extract | Relaxation Body strengthening Warming up | [73] |
La Le | Poland | Mud hydrolate with linden | Hydrolate | Peat Moss Extract | Purification Toning Regulation of sebum secretion | [74] |
Tołpa | Poland | Max Effect Anti-fatigue | Cream | Peat Extract | Soothes irritations Redness reduction Improved flexibility | [66] |
Sabbatical Beauty | United States | Piper’s Peat Serum | Serum | Peat Extract | Reducing the visibility of pores Purification Anti-aging Anti-inflammatory Soothing irritations | [75] |
Bingospa | Poland | Peat Shampoo | Shampoo | Peat Extract | Improved circulation Anti-inflammatory Soothing irritations | [76] |
Sulphur | Poland | Buskodent | Gel for Gums | Peat Extract | Preventing loosening and falling out of teeth Reducing bleeding gums Strengthening the periodontium Breath freshening | [77] |
Gorvita | Poland | Mud Ointment | Ointment | Peat Extract | Anti-inflammatory Soothing irritations An alternative to mud compresses | [78] |
CD Formulation | United States | Raw Material | - | Humic Acids | Chelating agent | [79] |
Osmosis | United States | Nutrient Activating Mist | Mist | Humic Acids | Skin conditioning, chelating agent, skin-conditioning agent | [80] |
Spoiled Child | United States | Spoiled Child A22 Biotin Boost Hair + Scalp Serum | Hair and Scalp Serum | Humic Acids | Skin conditioning, chelating agent, skin-conditioning agent | [81] |
Activity | Mechanism of Action | Ref. |
---|---|---|
Effects on the skeletal system | -induction of osteogenic differentiation of hMSCs | [112] |
-decreases in the activity of alkaline phosphatase -increases in the concentration of osteocalcin and phosphorus in the serum | [113] | |
-improvement in quality of life of patients -reduction in the consumption of symptomatic drugs | [114] | |
Anti-inflammatory effect | -decreases the expression of IL-1α -downregulation of the expression of TNFα | [126] |
-increases in level of IL-10 | [127] | |
Effect on the respiratory system | -increases in citrulline levels -decrease in ornithine levels | [123] |
-increases in the impedance curves that correspond to the normal ventilation of the tympanic box -decreases in pathological impedance curves | [123] | |
-decreases in IgE concentration -increases in IgA concentration | [124] | |
Effect on the muscular system | -improves Visual Analogue Scale (VAS) score, -alleviates muscle spasms, -alleviates local tenderness, -enhances flexion–extension and rotation of the spine -improves the Schober’s index | [114] |
Antioxidant activity | -decreases in values of total oxidative stress (TOS) and oxidative stress index (OSI) -increases in total antioxidant capacity (TAC) and total nitric oxide (NOX) levels | [128] |
-reduction in peroxide concentrations and SOD activities | [129] | |
-inhibition of DNA damage | [130] | |
Antimicrobial activity | -reduction in growth of E. coli, E. faecalis, and S. aureus | [131] |
Activity | Mechanism of Action | References |
---|---|---|
Anti-acne activity | -reduction in the growth (65%) of C. acnes | [133] |
Effect on psoriasis | -reduction in paw swelling -increases somatostatin concentration -decreases PASI (Psoriasis Area and Severity Index) -increases migration of Langerhans cells from the dermis to the epidermis | [117] |
-reduction in proliferation of keratinocytes, fibroblasts, and macrophages | [134] | |
-50% reduction in the PASI score | ||
Effect on atopic dermatitis | -decreases IgE level -inhibition of serum inflammatory cytokines (IL-1β, IL-13, and TNF-α) -reduction in reactive oxygen species (ROS) and malondialdehyde (MDA) in serum | [118] |
Effect on skin irritations | -reduction in the degree of skin barrier disruption | [119] |
Skin-regenerating effect | -increases the proliferation and migration of keratinocytes -modulating the regenerated collagen and elastic fibers | [120] |
Producer | Country of Origin | Trade Name | Cosmetic Form | Properties of the Cosmetic According to the Producer | Ref. |
---|---|---|---|---|---|
BALNEO kosmetyki | Poland | Biosulfide vitamin and nourishing face cream | cream | -reduces and smoothes wrinkles -strengthens and improves skin density -rejuvenates features and improves facial contours | [137] |
Dr Duda | Poland | Biosulfide mist for face and body | mist | -enhances the protective barrier of the epidermis | [69] |
Biosulfide emulsion gel | fat-free emulsion | -moisturizes and nourishes all skin types -reduces sweating of feet and hands -regenerates damaged nail plate | |||
Biosulfide Shampoo + KERATIN, PENTAVITIN complex | shampoo | -increases the hydration of hair and scalp -relieves itching | |||
Buski Sulfur Cream | cream | -moisturizes dry and very dry skin -softens, smoothes, firms, and elasticizes the skin | |||
Sulfur mask for body care | mask | -removes dead cells from the skin surface (peeling) -facilitates the natural regeneration of dry and cracked skin on heels, elbows, and feet -reduces or removes stretch marks and cellulite -firms, smoothes, and tightens the skin | |||
SPA Cottage | Great Britain | Serum Sulphur Water | serum | -increases collagen production -regenerates the skin | [136] |
Night Cream Sulphur Water | cream | -increases collagen production -regenerates the skin | |||
Day Cream Sulphur Water | cream | -increases collagen production -regenerates the skin | |||
SULPHUR Busko Zdroj | Poland | Buskie SPA Siarczkowe | bath emulsion | -smoothes -cleanses and moisturizes -reduces tension and relaxes leg heaviness | [77] |
Buska maska siarczkowa/Busko sulphide mask | mask | -smoothes and moisturizes the skin -reduces the visibility of stretch marks -reduces cellulite | |||
Hypoallergenic sulfide gel | gel | -reduces the number of microorganisms responsible for skin inflammation -regulates the process of exfoliation of the epidermis | |||
Mineral sulphide cream with vitamin A—for face and body | cream | -moisturizes, smoothes, firms, and elasticizes the skin | |||
Mineral SPA Shampoo | shampoo | -cleanses the scalp -reduces hair oiliness and reduces the symptoms of dandruff | |||
Mineral SPA Conditioner | conditioner | -reduces hair oiliness | |||
WIENIEC ZDROJ | Poland | Anti-cellulite body scrub with sulphide water | scrub | -refreshes and exfoliates dead skin -reduces cellulite -eliminates roughness | [138] |
Nourishing and regenerating face serum with sulphide water | serum | -nourishes and reduces skin dryness | |||
Moisturizing hair conditioner with sulphide water | conditioner | -moisturizes, nourishes, and supports hair regeneration | |||
Nourishing and moisturizing body balm with sulphide water | balm | -moisturizes, nourishes, and reduces the roughness of the epidermis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błońska-Sikora, E.M.; Klimek-Szczykutowicz, M.; Michalak, M.; Kulik-Siarek, K.; Wrzosek, M. Potential Possibilities of Using Peat, Humic Substances, and Sulfurous Waters in Cosmetology. Appl. Sci. 2024, 14, 6912. https://doi.org/10.3390/app14166912
Błońska-Sikora EM, Klimek-Szczykutowicz M, Michalak M, Kulik-Siarek K, Wrzosek M. Potential Possibilities of Using Peat, Humic Substances, and Sulfurous Waters in Cosmetology. Applied Sciences. 2024; 14(16):6912. https://doi.org/10.3390/app14166912
Chicago/Turabian StyleBłońska-Sikora, Ewelina Maria, Marta Klimek-Szczykutowicz, Monika Michalak, Katarzyna Kulik-Siarek, and Małgorzata Wrzosek. 2024. "Potential Possibilities of Using Peat, Humic Substances, and Sulfurous Waters in Cosmetology" Applied Sciences 14, no. 16: 6912. https://doi.org/10.3390/app14166912
APA StyleBłońska-Sikora, E. M., Klimek-Szczykutowicz, M., Michalak, M., Kulik-Siarek, K., & Wrzosek, M. (2024). Potential Possibilities of Using Peat, Humic Substances, and Sulfurous Waters in Cosmetology. Applied Sciences, 14(16), 6912. https://doi.org/10.3390/app14166912