A Low-Cost Redundant Attitude System for Small Satellites, Based on Strap-Down Inertial Techniques and Gyro Sensors Linear Clustering
Abstract
:Featured Application
Abstract
1. Introduction
2. The Attitude Algorithm
2.1. Theoretical Background of the Attitude Algorithm
2.2. Attitude Algorithm Software Implementation and Experimental Testing
3. Data Fusion Algorithm
3.1. Mathematics of the Data Fusion Algorithm
3.2. Software Modelling and Experimental Testing of the Data Fusion Algorithm
4. Results Obtained during the Testing of the Redundant Attitude System with Experimental Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quinchia, A.G.; Falco, G.; Falletti, E.; Dovis, F.; Ferrer, C. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems. Sensors 2013, 13, 9549–9588. [Google Scholar] [CrossRef]
- Titterton, D.H.; Weston, J. Strapdown Inertial Navigation Technology, 2nd ed.; Institution of Engineering and Technology: Stevenage, UK, 2004. [Google Scholar]
- Farrell, J. Aided Navigation. GPS with High Rate Sensors; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Gill, E.; Simone D’Amico, S.; Montenbruck, O. Autonomous Formation Flying for the PRISMA Mission. J. Spacecr. Rocket. 2007, 44, 671–681. [Google Scholar] [CrossRef]
- Capuano, V.; Botteron, C.; Wang, Y.; Tian, J.; Leclère, J.; Farine, P.A. GNSS/INS/Star Tracker Integrated Navigation System for Earth-Moon Transfer Orbit. In Proceedings of the 27th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS + 2014), Tampa, FL, USA, 8–12 September 2014; pp. 1433–1447. [Google Scholar]
- Sazdovski, V.; Kitanov, A.; Petrovic, I. Implicit observation model for vision aided inertial navigation of aerial vehicles using single camera vector observations. Aerosp. Sci. Technol. 2015, 40, 33–46. [Google Scholar] [CrossRef]
- Li, X.; Li, C. Navigation and Guidance of Orbital Transfer Vehicle; Springer Nature Singapore Pte Ltd.: Singapore; National Defense Industry Press: Beijing, China, 2018. [Google Scholar]
- Erkec, T.Y.; Hajiyev, C. Review on Relative Navigation Methods of Space Vehicles. Curr. Chin. Sci. 2021, 1, 184–195. [Google Scholar] [CrossRef]
- Erkec, T.Y.; Hajiyev, C. The methods of relative navigation of satellites formation flight. Int. J. Sustain. Aviat. 2021, 6, 260–279. [Google Scholar] [CrossRef]
- Scharnagl, J. Distributed Guidance, Navigation and Control for Satellite Formation Flying Missions. Ph.D. Thesis, Universität Würzburg—Schweinfurt, Würzburg, Germany, 2022. [Google Scholar]
- iXblue. Available online: https://www.ixblue.com/photonics-space/inertial-navigation-for-space/ (accessed on 4 July 2024).
- Safran. Available online: https://safran-navigation-timing.com/product/spacenaute/ (accessed on 4 July 2024).
- Advanced Navigation. Available online: https://www.advancednavigation.com/space (accessed on 4 July 2024).
- Australian Space Agency. Available online: https://www.space.gov.au/news-and-media/navigating-distant-frontiers-ai-and-quantum-technology (accessed on 4 July 2024).
- Advanced Navigation—News. Available online: https://www.advancednavigation.com/news/advanced-navigation-helps-nasa-get-mars/ (accessed on 4 July 2024).
- Q-CTRL. Available online: https://q-ctrl.com/case-study/developing-a-quantum-assured-navigation-solution (accessed on 4 July 2024).
- Somov, Y.; Butyrin, S.; Somov, S. Inertial Navigation and Control of a Space Robot for Servicing a Geostationary Satellite. In Proceedings of the 28th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), Saint Petersburg, Russia, 31 May–2 June 2021; pp. 1–5. [Google Scholar]
- He, Z.; Fei, B.; Du, J. Inertial Navigation Method for Spacecraft Based on General Relativity. In Innovative Computing. Lecture Notes in Electrical Engineering; Hung, J.C., Chang, J.W., Pei, Y., Wu, W.C., Eds.; Springer: Singapore, 2022; Volume 791, pp. 79–86. [Google Scholar]
- Mannings, R. Ubiquitous Positioning; Artech House: London, UK, 2008. [Google Scholar]
- He, L.; Ma, W.; Guo, P.; Sheng, T. Developments of attitude determination and control system of microsats: A survey. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2021, 235, 1733–1750. [Google Scholar] [CrossRef]
- Reichel, F.; Bangert, P.; Busch, S.; Ravandoor, K.; Schilling, K. The Attitude Determination and Control System of the Picosatellite UWE-3*. In Proceedings of the 19th IFAC Symposium on Automatic Control in Aerospace, Würzburg, Germany, 2–6 September 2013; pp. 271–276. [Google Scholar]
- Ni, S.; Zhang, C. Attitude determination of nano satellite based on gyroscope, Sun sensor and magnetometer. Procedia Eng. 2011, 15, 959–963. [Google Scholar] [CrossRef]
- Kumar, J.S.J.; Gunasekar, S.; Shekhar, H.; Gupta, S.D. Design of MEMS Based Attitude Determination and Control System for Nanosatellite. Int. J. Recent Trends Eng. 2009, 1, 316–319. [Google Scholar]
- Mok, S.H.; Byeon, S.Y.; Bang, H.; Choi, Y. Performance comparison of gyro-based and gyroless attitude estimation for cubesats. Int. J. Control. Autom. Syst. 2020, 18, 1150–1160. [Google Scholar] [CrossRef]
- Colagrossi, A.; Lavagna, M.; Bertacin, R. An Effective Sensor Architecture for Full-Attitude Determination in the HERMES Nano-Satellites. Sensors 2023, 23, 2393. [Google Scholar] [CrossRef]
- Mimasu, Y.; van der Ha, J.C.; Narumi, T. Attitude Determination by Magnetometer and Gyros during Eclipse. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008; pp. 1–14. [Google Scholar]
- Stearns, H.; Tomizuka, M. Multiple Model Adaptive Estimation of Satellite Attitude using MEMS Gyros. In Proceedings of the American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011; pp. 3490–3495. [Google Scholar]
- Tissera, M.S.C.; Low, K.S.; Goh, S.T. On-orbit Gyroscope Bias Compensation to Improve Satellite Attitude Control Performance. In Proceedings of the IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021; pp. 1–10. [Google Scholar]
- Pérez, L.L.; Koch, P.; Smith, D.; Walker, R. GOMX-4, the most advance nanosatellite mission for IOD purposes. In Proceedings of the 4S Symposium, 125, Sorrento, Italy, 28 May–1 June 2018; pp. 12–30. [Google Scholar]
- Liu, Z.; Zhou, K.; Sun, X. Satellite Attitude Determination Using ADS-B Receiver and MEMS Gyro. Aerospace 2023, 10, 370. [Google Scholar] [CrossRef]
- Hauschild, A.; Montenbruck, O. GPS-based attitude determination for microsatellites. In Proceedings of the ION GPS 2007, Fort Worth, TX, USA, 25–28 September 2007; pp. 2424–2434. [Google Scholar]
- Scaccia, M. Numerical Algorithms for Attitude Determination Using GPS. Master’s Thesis, School of Computer Science, McGill University, Montreal, QC, Canada, 2011. [Google Scholar]
- Rakisheva, Z.; Sukhenko, A.; Kaliyeva, N. Optimization Issues in the Problem of Small Satellite Attitude Determination and Control. In Modeling and Optimization in Space Engineering. State of the Art and New Challenges; Fasano, G., Pintér, D.J., Eds.; Springer Optimization and Its Applications Bookseries; Springer: Cham, Switzerland, 2019; Volume 144, pp. 373–393. [Google Scholar]
- Kuwahara, T. Introduction to CubeSat Attitude Control System. Tohoku University. Department of Aerospace Engineering. KiboCUBE Academy. Available online: https://www.unoosa.org/documents/pdf/psa/access2space4all/KiboCUBE/AcademySeason2/On-demand_Pre-recorded_Lectures/KiboCUBE_Academy_2021_OPL14.pdf (accessed on 12 July 2024).
- Masi, S. Attitude Determination and Attitude Control. Sapienza Universita di Roma—Dipartimento di Fisica, Methods of Space Astrophysics. Available online: https://oberon.roma1.infn.it/metodiastrofisicaspaziale/lezione_7_2015.pdf (accessed on 12 July 2024).
- Enger, E. Spacecraft Attitude Determination Methods in an Educational Context; KTH Royal Institute of Technology, School of Engineering Sciences: Stockholm, Sweden, 2019. [Google Scholar]
- Markley, F.L.; Crassidis, J.L. Fundamentals of Spacecraft Attitude Determination and Control; Spinger: New York, NY, USA, 2014. [Google Scholar]
- Crassidis, J.L.; Markley, F.L.; Cheng, Y. Survey of nonlinear attitude estimation methods. J. Guid. Control. Dyn. 2007, 30, 12–28. [Google Scholar] [CrossRef]
- Ismail, Z.; Varatharajoo, R.; Chak, Y.C. A fractional-order sliding mode control for nominal and underactuated satellite attitude controls. Adv. Space Res. 2020, 66, 321–334. [Google Scholar] [CrossRef]
- Sofyalı, A.; Jafarov, E.M. Integral Sliding Mode Control of Small Satellite Attitude Motion by Purely Magnetic Actuation. In Proceedings of the 19th World Congress The International Federation of Automatic Control, Cape Town, South Africa, 24–29 August 2014; pp. 7947–7953. [Google Scholar]
- Cao, L.; Li, X.; Chen, X.; Zhao, Y. Minimum sliding mode error feedback control for fault tolerant small satellite attitude control. Adv. Space Res. 2014, 53, 309–324. [Google Scholar] [CrossRef]
- Navabi, M.; Hashkavaei, N.S.; Reyhanoglu, M. Satellite attitude control using optimal adaptive and fuzzy controllers. Acta Astronaut. 2023, 204, 434–442. [Google Scholar] [CrossRef]
- Meng, Z.; Liang, H. Adaptive attitude maneuver control for satellite with large scale antenna in space thermal environment. Adv. Space Res. 2022, 70, 2227–2239. [Google Scholar] [CrossRef]
- Sadigh, S.M.; Kashaninia, A.; Dehghan, S.M.M. Adaptive finite-time fault-tolerant control for nano-satellite attitude tracking under actuator constraints. Aerosp. Sci. Technol. 2023, 138, 108337. [Google Scholar] [CrossRef]
- Fan, L.; Huang, H.; Sun, L.; Zhou, K. Robust attitude control for a rigid-flexible-rigid microsatellite with multiple uncertainties and input saturations. Aerosp. Sci. Technol. 2019, 95, 105443. [Google Scholar] [CrossRef]
- Li, Y.; Ye, D.; Sun, Z. Robust finite time control algorithm for satellite attitude control. Aerosp. Sci. Technol. 2017, 68, 46–57. [Google Scholar] [CrossRef]
- Han, C.; Guo, J.; Pechev, A. Nonlinear H∞ based underactuated attitude control for small satellites with two reaction wheels. Acta Astronaut. 2014, 104, 159–172. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, K.; Xiang, J. A stabilized optimal nonlinear feedback control for satellite attitude tracking. Aerosp. Sci. Technol. 2013, 27, 17–24. [Google Scholar] [CrossRef]
- MacKunis, W.; Leve, F.; Patre, P.M.; Fitz-Coy, N.; Dixon, W.E. Adaptive neural network-based satellite attitude control in the presence of CMG uncertainty. Aerosp. Sci. Technol. 2016, 54, 218–228. [Google Scholar] [CrossRef]
- Shehzad, M.F.; Asghar, A.B.; Jaffery, M.H.; Naveed, K.; Čonka, Z. Neuro-fuzzy system based proportional derivative gain optimized attitude control of CubeSat under LEO perturbations. Heliyon 2023, 9, e20434. [Google Scholar] [CrossRef]
- Bello, A.; del Castañedo, A.; Olfe, K.S.; Rodríguez, J.; Lapuerta, V. Parameterized fuzzy-logic controllers for the attitude control of nanosatellites in low earth orbits. A comparative studio with PID controllers. Expert Syst. Appl. 2021, 174, 114679. [Google Scholar] [CrossRef]
- Barbour, N.M.; Schmidt, G. Inertial Sensor Technology Trends. IEEE Sens. J. 2001, 1, 332–339. [Google Scholar] [CrossRef]
- Barbour, N.; Hopkins, R.; Kourepenis, A.; Ward, P. Inertial MEMS Systems and Applications. In Proceedings of the RTO-EN-SET-116, Low-Cost Navigation Sensors and Integration Technology, Bagneux, France, 28–29 March 2011. [Google Scholar]
- KVH Industries, Inc. Guide to Comparing Gyro and IMU Technologies—Micro-Electro-Mechanical Systems and Fiber Optic Gyros; KVH Industries, Inc.: Middletown, RI, USA, 2014. [Google Scholar]
- Hasan, A.M.; Samsudin, K.; Ramli, A.R.; Azmir, R.S. Wavelet-based pre-filtering for low cost inertial sensors. J. Appl. Sci. 2010, 10, 2217–2230. [Google Scholar] [CrossRef]
- Mao, B.; Wu, J.W.; Wu, J.T.; Zhou, X.M. MEMS Gyro Denoising Based on Second Generation Wavelet Transform. In Proceedings of the First International Conference on Pervasive Computing, Signal Processing and Applications, Harbin, China, 17–19 September 2010; pp. 255–258. [Google Scholar]
- Skaloud, B.; Bruton, A.M.; Schwartz, K. Detection and filtering of short-term (1/f) noise in inertial sensors. J. ION 1999, 46, 97–107. [Google Scholar] [CrossRef]
- Soták, M. Application of wavelet analysis to inertial measurements. Sci. Mil. 2008, 3, 17–20. [Google Scholar]
- Ramalingam, R.; Anitha, G.; Shanmugam, J. Microelectromechnical systems inertial measurement unit error modelling and error analysis for low-cost strapdown inertial navigation system. Def. Sci. J. 2009, 59, 650–658. [Google Scholar] [CrossRef]
- Lee, T.G.; Sung, C.K. Estimation technique of fixed sensor errors for SDINS calibration. Int. J. Control. Autom. Syst. 2004, 2, 536–541. [Google Scholar]
- Shen, S.C.; Chen, C.J.; Huang, H.J. A new calibration method for low cost MEMS inertial sensor module. J. Mar. Sci. Technol. 2010, 18, 819–824. [Google Scholar] [CrossRef]
- Aydemira, G.A.; Saranli, A. Characterization and calibration of MEMS inertial sensors for state and parameter estimation applications. Measurement 2012, 45, 1210–1225. [Google Scholar] [CrossRef]
- Wang, L.; Wang, F. Intelligent Calibration Method of low cost MEMS Inertial Measurement Unit for an FPGA-based Navigation System. Int. J. Intell. Eng. Syst. 2011, 4, 32–41. [Google Scholar] [CrossRef]
- Yuan, J.; Yuan, Y.; Liu, F.; Pang, Y.; Lin, J. An improved noise reduction algorithm based on wavelet transformation for MEMS gyroscope. Front. Optoelectron. 2015, 8, 413–418. [Google Scholar] [CrossRef]
- Oliveira, O.J.; Filho, W.C.L.; Milagre da Fonseca, I. Inertial measurement unit calibration procedure for a redundant tetrahedral gyro configuration with wavelet denoising. J. Aerosp. Technol. Manag. 2012, 4, 163–168. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Liu, X.; Yao, Y.; Wu, L.; Sun, J. A Self-Alignment Algorithm for SINS Based on Gravitational Apparent Motion and Sensor Data Denoising. Sensors 2015, 15, 9827–9853. [Google Scholar] [CrossRef]
- Shi, Y.S.; Gao, Z.F. Study on MEMS Gyro Signal De-Noising Based on Improved Wavelet Threshold Method. Appl. Mech. Mater. 2013, 433–435, 1558–1562. [Google Scholar]
- Noureldin, A.; Armstrong, J.; El-Shafie, A.; Karamat, T.; McGaughey, D.; Korenberg, M.; Hussain, A. Accuracy enhancement of inertial sensors utilizing high resolution spectral analysis. Sensors 2012, 12, 11638–11660. [Google Scholar] [CrossRef]
- Grigorie, T.L.; Botez, R.M. A new method to reduce the noise of the miniaturised inertial sensors disposed in redundant linear configurations. Aeronaut. J. 2013, 117, 111–132. [Google Scholar] [CrossRef]
- Grigorie, T.L.; Obreja, R.; Sandu, D.G.; Corcau, J.I. Allan variance analysis of the miniaturized sensors in a strap-down inertial 869 measurement unit. In Proceedings of the 12th International Multidisciplinary Scientific GeoConference—SGEM2012, Albena, Bulgaria, 17–23 June 2012; Volume 3, pp. 443–450. [Google Scholar]
- Kim, H.; Lee, J.G.; Park, C.G. Performance improvement of GPS/INS Integrated System Using Allan Variance Analysis. In Proceedings of the 2004 International Symposium on GNSS/GPS, Sydney, Australia, 6–8 December 2004. [Google Scholar]
- Grewal, M.S.; Weill, L.R.; Andrews, A.P. Global Positioning Systems, Inertial Navigation, and Integration; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Grigorie, T.L.; Edu, I.R.; Corcau, J.I. Fuzzy logic denoising of the miniaturized inertial sensors in redundant configurations. In Proceedings of the 33rd International Conference on Information Technology Interfaces ITI 2011, Cavtat, Croatia, 27–30 June 2011. [Google Scholar]
- Nassar, S. Accurate INS/DGPS positioning using INS data de-noising and autoregressive (AR) modeling of inertial sensor errors. Geomatica 2005, 59, 283–294. [Google Scholar]
- Radix, J.C. Systemes Inertiels a Composants Lies <<Strap-Down>>; SUP’AERO: Toulouse, France, 1993. [Google Scholar]
- Allerton, D.; Jia, H. An error compensation method for skewed redundant inertial configuration. In Proceedings of the ION 58th Annual Meeting and CIGTF 21st Guidance Test Symposium, Albuquerque, NM, USA, 24–26 June 2002; pp. 142–147. [Google Scholar]
- Seong, Y.C.; Chan, G.P. Calibration of a redundant IMU. In Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Rhode Island, USA, 16–19 August 2004. [Google Scholar]
- Guerrier, S. Improving Accuracy with Multiple Sensors: Study of Redundant MEMS-IMU/GPS Configurations. In Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, GA, USA, 22–25 September 2009; pp. 3114–3121. [Google Scholar]
- Grigorie, T.L.; Botez, R.M. Modeling and numerical simulation of an algorithm for the inertial sensors errors reduction and for the increase of the strap-down navigator redundancy degree in a low cost architecture. Trans. Can. Soc. Mech. Eng. 2010, 34, 1–16. [Google Scholar] [CrossRef]
- Savage, P.G. Strapdown Inertial Navigation; Strapdown Associates, Inc.: Plymouth, MN, USA, 1990. [Google Scholar]
- Bekir, E. Introduction to Modern Navigation Systems; World Scientific Publishing: Singapore, 2007. [Google Scholar]
- Grigorie, T.L. Strap-Down Inertial Navigation Systems. Optimization Studies; SITECH: Craiova, Romania, 2007. [Google Scholar]
- Grigorie, T.L.; Botez, R.M.; Sandu, D.G. A numerical implemented method for the aircraft attitude determination. In Proceedings of the 20th IASTED International Conference on Applied Simulation and Modelling, Naples, Italy, 25–27 June 2012. [Google Scholar]
- Grigorie, T.L.; Botez, R.M. A redundant aircraft attitude system based on miniaturized gyro clusters data fusion. In Proceedings of the International Conference on Computer as a tool—EUROCON, Zagreb, Croatia, 1–4 July 2013. [Google Scholar]
- Chen, Z.; Yuan, J.; Vucetic, B. Analysis of Transit Antenna Selection/Maximal-Ratio Combining in Rayleigh Fading Channels. IEEE Trans. Veh. Technol. 2005, 54, 1312–1321. [Google Scholar] [CrossRef]
- Tomiuk, B.R.; Beaulieu, N.C. A new look at maximal ratio combining. In Proceedings of the IEEE Global Telecommunications Conference GLOBECOM’00, San Francisco, CA, USA, 27 November–1 December 2000; pp. 943–948. [Google Scholar]
- Varshney, P.K. Multisensor data fusion. Electron. Commun. Eng. J. 1997, 9, 245–253. [Google Scholar] [CrossRef]
- Grigorie, T.L.; Botez, R.M.; Sandu, D.G.; Grigorie, O. Experimental testing of a data fusion algorithm for miniaturized inertial sensors in redundant configurations. In Proceedings of the MMSSE’14, Interlaken, Switzerland, 22–24 February 2014; pp. 116–122. [Google Scholar]
m | ||
---|---|---|
1 | 1 | 1/2 |
2 | 1/2 | |
3 | ||
4 | ||
5 | ||
6 |
Excitation [m/s2] | Mean Values of the Standard Deviations [m/s2] | ||||
---|---|---|---|---|---|
Sensor No. 1 | Sensor No. 2 | Sensor No. 3 | Sensor No. 4 | Fused Signal | |
0 | 1.5462·10−3 | 1.3747·10−3 | 1.7580·10−3 | 1.6100·10−3 | 7.7577·10−4 |
9.80655 | 1.5605·10−3 | 1.3716·10−3 | 1.7492·10−3 | 1.5995·10−3 | 7.7515·10−4 |
−9.80655 | 1.5604·10−3 | 1.3756·10−3 | 1.7690·10−3 | 1.6043·10−3 | 7.8316·10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustață, M.Ș.; Grigorie, T.L. A Low-Cost Redundant Attitude System for Small Satellites, Based on Strap-Down Inertial Techniques and Gyro Sensors Linear Clustering. Appl. Sci. 2024, 14, 6585. https://doi.org/10.3390/app14156585
Mustață MȘ, Grigorie TL. A Low-Cost Redundant Attitude System for Small Satellites, Based on Strap-Down Inertial Techniques and Gyro Sensors Linear Clustering. Applied Sciences. 2024; 14(15):6585. https://doi.org/10.3390/app14156585
Chicago/Turabian StyleMustață, Mircea Ștefan, and Teodor Lucian Grigorie. 2024. "A Low-Cost Redundant Attitude System for Small Satellites, Based on Strap-Down Inertial Techniques and Gyro Sensors Linear Clustering" Applied Sciences 14, no. 15: 6585. https://doi.org/10.3390/app14156585
APA StyleMustață, M. Ș., & Grigorie, T. L. (2024). A Low-Cost Redundant Attitude System for Small Satellites, Based on Strap-Down Inertial Techniques and Gyro Sensors Linear Clustering. Applied Sciences, 14(15), 6585. https://doi.org/10.3390/app14156585