The Pedestrian Level of Service in Metro Stations: A Pilot Study Based on Passenger Detection Techniques
Abstract
1. Introduction
2. Existing Studies Related to the Level of Service in Metro Stations
3. Method
3.1. Metro Stations in Valparaíso
3.2. Observations inside the Train and on the Platform
- Seats.
- Central hall (in front of the train doors).
- Corridors.
3.3. Tracking Technique
4. Results
4.1. Descriptive Analysis
4.2. Regression Model Analysis
- Speed: dependent;
- Dispersion: independent;
- Type of passenger: independent;
- Platform features: independent;
- Detected passengers: independent.
β4⋅Detected Passengers + ϵ
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Empresa de los Ferrocarriles del Estado (EFE). Memoria Anual Empresa de los Ferrocarriles del Estado; Empresa de los Ferrocarriles del Estado: Valparaíso, Chile, 2022. (In Spanish) [Google Scholar]
- Office of Rail and Road (ORR). Passenger Rail Usage. UK. 2022. Available online: https://dataportal.orr.gov.uk/statistics/usage/passenger-rail-usage/#:~:text=A%20total%20of%20417%20million,year%20to%2031%20December%202023 (accessed on 14 May 2024).
- TRB. National Research Council, Highway Capacity Manual 2010; TRB: Washington, DC, USA, 2010. [Google Scholar]
- Seriani, S.; Fernández, R. Planning guidelines for metro–bus interchanges by means of a pedestrian microsimulation model. Transp. Plan. Technol. 2015, 38, 569–583. [Google Scholar] [CrossRef]
- Seriani, S.; Fujiyama, T.; Holloway, C. Exploring the pedestrian level of interaction on platform conflict areas at metro stations by real-scale laboratory experiments. Transp. Plan. Technol. 2017, 40, 100–118. [Google Scholar] [CrossRef]
- Fruin, J.J. Pedestrian Planning and Design; Metropolitan Association of Urban Designers and Environmental Planners: New York, NY, USA, 1971. [Google Scholar]
- Seyfried, A.; Steffen, B.; Klingsch, W.; Boltes, M. The fundamental diagram of pedestrian movement revisited. J. Stat. Mech. Theory Exp. 2005, 2005, P10002. [Google Scholar] [CrossRef]
- Bellomo, N.; Liao, J.; Quaini, A.; Russo, L.; Siettos, C. Human behavioral crowds: Review, critical analysis, and research perspectives. Math. Models Methods Appl. Sci. 2023, 33, 1611–1659. [Google Scholar] [CrossRef]
- Evans, G.W.; Wener, R.E. Crowding and personal space invasion on the train: Please don’t make me sit in the middle. J. Environ. Psychol. 2007, 27, 90–94. [Google Scholar] [CrossRef]
- Yang, J.; Shiwakoti, N.; Tay, R. Train passengers’ perceptions and preferences for different platform and carriage design features. J. Public Transp. 2024, 26, 100085. [Google Scholar] [CrossRef]
- Boltes, M.; Seyfried, A. Collecting pedestrian trajectories. Neurocomputing 2013, 100, 127–133. [Google Scholar] [CrossRef]
- Aguayo, P.; Seriani, S.; Delpiano, J.; Farias, G.; Fujiyama, T.; Velastin, S.A. Experimental Method to Estimate the Density of Passengers on Urban Railway Platforms. Sustainability 2023, 15, 1000. [Google Scholar] [CrossRef]
- Polus, A.; Schofer, J.L.; Ushpiz, A. Pedestrian flow and level of service. J. Transp. Eng. 1983, 109, 46–56. [Google Scholar] [CrossRef]
- Mōri, M.; Tsukaguchi, H. A new method for evaluation of level of service in pedestrian facilities. Transp. Res. Part A Gen. 1987, 21, 223–234. [Google Scholar] [CrossRef]
- Weidmann, U. Transporttechnik der Fussgaenger; Schriftenreihe Ivt-Berichte 90; ETH: Zurich, Switzerland, 1993. (In German) [Google Scholar]
- Cheung, C.Y.; Lam, W.H.K. Pedestrian Route Choices between Escalator and Stairway in MTR Stations. J. Transp. Eng. 1998, 124, 277–285. [Google Scholar] [CrossRef]
- Jelić, A.; Appert-Rolland, C.; Lemercier, S.; Pettré, J. Properties of pedestrians walking in line. II. Stepping behavior. Phys. Rev. E 2012, 86, 046111. [Google Scholar] [CrossRef] [PubMed]
- Daamen, W.; Hoogendoorn, S.P.; Bovy, P.H. First-order pedestrian traffic flow theory. Transp. Res. Rec. 2005, 1934, 43–52. [Google Scholar] [CrossRef]
- Porter, E.; Hamdar, S.H.; Daamen, W. Pedestrian dynamics at transit stations: An integrated pedestrian flow modeling approach. Transp. A Transp. Sci. 2018, 14, 468–483. [Google Scholar] [CrossRef]
- Feng, Y.; Duives, D.; Daamen, W.; Hoogendoorn, S. Data collection methods for studying pedestrian behaviour: A systematic review. J. Affect. Disord. 2021, 187, 107329. [Google Scholar] [CrossRef]
- Teknomo, K.; Takeyama, Y.; Inamura, H. Determination of pedestrian flow performance based on video tracking and microscopic simulations. arXiv 2016, arXiv:1609.02243. [Google Scholar]
- Vanumu, L.D.; Rao, K.R.; Tiwari, G. Fundamental diagrams of pedestrian flow characteristics: A review. Eur. Transp. Res. Rev. 2017, 9, 49. [Google Scholar] [CrossRef]
- Berrou, J.L.; Beecham, J.; Quaglia, P.; Kagarlis, M.A.; Gerodimos, A. Calibration and validation of the Legion simulation model using empirical data. In Pedestrian and Evacuation Dynamics 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 167–181. [Google Scholar]
- Banerjee, A.; Maurya, A.K.; Lämmel, G. A review of pedestrian flow characteristics and level of service over different pedestrian facilities. Collect. Dyn. 2018, 3, 1–52. [Google Scholar]
- Hu, M.; Lu, L.; Yang, J. Exploring an estimation approach for the pedestrian level of service for metro stations based on an interaction index. Transp. Lett. 2020, 12, 417–426. [Google Scholar] [CrossRef]
- Azadpeyma, A.; Kashi, E. Level of Service Analysis for Metro Station with Transit Cooperative Research Program (TCRP) Manual: A Case Study—Shohada Station in Iran. Urban Rail Transit 2019, 5, 39–47. [Google Scholar] [CrossRef]
- Wen, Y.; Yan, K.; Yu, C. Level of service standards for pedestrian facilities in shanghai metro stations. In Proceedings of the International Conference on Transportation Engineering 2007, Chengdu, China, 22–24 July 2007; pp. 2072–2078. [Google Scholar]
- Hänseler, F.S.; Bierlaire, M.; Scarinci, R. Assessing the usage and level-of-service of pedestrian facilities in train stations: A Swiss case study. Transp. Res. Part A Policy Prac. 2016, 89, 106–123. [Google Scholar] [CrossRef]
- Liang, J.; Lyu, G.; Teo, C.-P.; Gao, Z. Online Passenger Flow Control in Metro Lines. Oper. Res. 2023, 71, 768–775. [Google Scholar] [CrossRef]
- Li, Z.; Lo, S.; Ma, J.; Luo, X. A study on passengers’ alighting and boarding process at metro platform by computer simulation. Transp. Res. Part A Policy Prac. 2020, 132, 840–854. [Google Scholar] [CrossRef]
- Fu, L.; Chen, Q.; Shi, Q.; Chen, Y.; Shi, Y. Characteristics of pedestrians’ alighting and boarding process in metro stations. Tunn. Undergr. Space Technol. 2023, 141, 105362. [Google Scholar] [CrossRef]
- Mow, C.; Seriani, S.; Fujiyama, T. Where and how often do people touch train interiors? An investigation during the pandemic. In Proceedings of the Institution of Civil Engineers-Municipal Engineer; Emerald Group Publishing Ltd.: Bingley, UK, 2024; Volume 17. [Google Scholar]
- Seriani, S.; Aprigliano, V.; Gonzalez, S.; Baeza, G.; Lopez, A.; Fujiyama, T. The Effect of Seat Layout on the Interaction of Passengers Inside the Train Carriage: An Experimental Approach for Urban Services. Sustainability 2024, 16, 998. [Google Scholar] [CrossRef]
- Munawar, I. Yolov7-Object-Tracking. 2023. Available online: https://github.com/RizwanMunawar/yolov7-object-tracking (accessed on 22 May 2024).
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Garcia, G.; Velastin, S.A.; Lastra, N.; Ramirez, H.; Seriani, S.; Farias, G. Train Station Pedestrian Monitoring Pilot Study Using an Artificial Intelligence Approach. Sensors 2024, 24, 3377. [Google Scholar] [CrossRef]
Dimension | Variable | Description |
---|---|---|
1. Passenger behaviour | Detected passengers | Number of passengers detected |
Speed | Component in x-axis and y-axis, which then is obtained by the absolute value (i.e., not the vector) (m/s) | |
Dispersion | Standard deviation of the average distance between passengers (m) | |
2. Train design | Seats, corridors, and central halls | Number, type, and dimensions |
3. Passenger characteristics | Type of passenger | e.g., children or adults |
Height | Height per passenger in each detection (m) | |
4. Train operation | Moment of the day | e.g., peak hour |
Train arrival | e.g., presence of the train at the platform | |
5. Platform built environment | Platform location | e.g., inbound or outbound |
Platform features | e.g., benches and bins |
Independent Variables | Coefficient (7:00 a.m.–7:20 a.m.) | Coefficient (7:20 a.m.–7:40 a.m.) | Coefficient (7:40 a.m.–8:00 a.m.) |
---|---|---|---|
Platform features | −0.170051 *** | 0.020419 *** | −0.351792 *** |
Type of passenger | 0.186987 *** | −0.109071 *** | 0.400202 *** |
Detected passengers | 0.046950 *** | 0.009448 *** | 0.018714 *** |
Dispersion | 0.136052 *** | 0.003626 * | −0.232739 *** |
Constant | −0.034553 | 0.117472 *** | 0.755561 *** |
R-squared | 0.477861 | 0.097675 | 0.09881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seriani, S.; Aprigliano, V.; Garcia, G.; Lopez, A.; Fujiyama, T. The Pedestrian Level of Service in Metro Stations: A Pilot Study Based on Passenger Detection Techniques. Appl. Sci. 2024, 14, 6515. https://doi.org/10.3390/app14156515
Seriani S, Aprigliano V, Garcia G, Lopez A, Fujiyama T. The Pedestrian Level of Service in Metro Stations: A Pilot Study Based on Passenger Detection Techniques. Applied Sciences. 2024; 14(15):6515. https://doi.org/10.3390/app14156515
Chicago/Turabian StyleSeriani, Sebastian, Vicente Aprigliano, Gonzalo Garcia, Ariel Lopez, and Taku Fujiyama. 2024. "The Pedestrian Level of Service in Metro Stations: A Pilot Study Based on Passenger Detection Techniques" Applied Sciences 14, no. 15: 6515. https://doi.org/10.3390/app14156515
APA StyleSeriani, S., Aprigliano, V., Garcia, G., Lopez, A., & Fujiyama, T. (2024). The Pedestrian Level of Service in Metro Stations: A Pilot Study Based on Passenger Detection Techniques. Applied Sciences, 14(15), 6515. https://doi.org/10.3390/app14156515