Chemical Migration from Wine Contact Materials
Abstract
:1. Introduction
2. Wine Packaging Materials
3. Chemical Migration, European Regulation, and International Organization of Vine and Wine
4. Chemical Substances Migrating to Wine
- (i)
- (ii)
- (iii)
- (iv)
- (v)
5. Wine Migration Studies on Chemical Contaminants
5.1. Migration Tests
5.2. Analytical Methods
5.2.1. Gas Chromatography
5.2.2. Liquid Chromatography
5.2.3. Elemental Analysis
5.2.4. Gravimetric Analysis
6. Wine Analysis Studies on Potential Migrating Substances
7. Discussion on the Findings of Wine Migration and Wine Analysis Studies
8. Mitigation Measures for Migrating Compounds from Wine Contact Materials
9. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full name |
BBP | Butyl benzyl phthalate |
BDE | 2,2,4,4-Tetrabromodiphenyl ether |
BHT | Butylated hydroxytoluene |
BPA | Bisphenol A |
DA | Diallylphthalate |
DBP | Dibutyl phthalate |
DEHA | Bis(2-ethylhexyl) adipate |
DEHP | Bis(2-ethylhexyl) phthalate |
DiDP | Di-isodecylphthalate |
DiNP | Di-isononylphthalate |
DIP | Di-isopropyl phthalate |
DMIP | Dimethyl isophthalate |
DMP | Dimethyl phthalate |
DOP | Di-n-octyl phthalate |
DPP | Diphenyl phthalate |
EBO | N,N’-Ethylene bis oleamide |
EDAB | Ethyl-4-dimethylaminobenzoate |
EHDAB | 2-Ethylhexyl-4-dimethylaminobenzoate |
EVA | Ethylene-vinyl acetate |
IRGACURE 184 | 1-Hydroxycyclohexyl-1-phenyl ketone |
ITX | 2-Isopropylthioxanthone |
NP | 4-n-Nonylphenol |
OP | 4-n-Octylphenol |
References
- James, A.; Yao, T.; Ked, H.; Wanga, Y. Microbiota for production of wine with enhanced functional components. Food Sci. Hum. Wellness 2023, 12, 1481–1492. [Google Scholar] [CrossRef]
- Hrelia, S.; Di Renzo, L.; Bavaresco, L.; Bernardi, E.; Malaguti, M.; Giacosa, A. Moderate Wine Consumption and Health: A Narrative Review. Nutrients 2023, 15, 175. [Google Scholar] [CrossRef]
- Organisation Internationale de la Vigne et du Vin. State of the World Vine and Wine Sector in 2022. 2023. Available online: https://www.oiv.int/sites/default/files/documents/OIV_State_of_the_world_Vine_and_Wine_sector_in_2022_2.pdf (accessed on 13 April 2024).
- Gancel, A.-L.; Jourdes, M.; Pons, A.; Teissedre, P.-L. Migration of polyphenols from natural and microagglomerated cork stoppers to hydroalcoholic solutions and their sensory impact. OENO One 2023, 57, 13–26. [Google Scholar] [CrossRef]
- Khalili Sadrabad, E.; Hashemi, S.A.; Nadjarzadeh, A.; Askari, E.; Akrami Mohajeri, F.; Ramroudi, F. Bisphenol A release from food and beverage containers–A review. Food Sci. Nutr. 2023, 11, 3718–3728. [Google Scholar] [CrossRef] [PubMed]
- Karbowiak, T.; Gougeon, R.D.; Alinc, J.B.; Brachais, L.; Debeaufort, F.; Voilley, A.; Chassagne, D. Wine Oxidation and the Role of Cork. Crit. Rev. Food Sci. Nutr. 2009, 50, 20–52. [Google Scholar] [CrossRef]
- Furtado, I.; Lopes, P.; Oliveira, A.S.; Amaro, F.; Bastos, M.d.L.; Cabral, M.; Guedes de Pinho, P.; Pinto, J. The Impact of Different Closures on the Flavor Composition of Wines during Bottle Aging. Foods 2021, 10, 2070. [Google Scholar] [CrossRef]
- Twede, D. The packaging technology and science of ancient transport amphoras. Packag. Technol. Sci. 2002, 15, 181–195. [Google Scholar] [CrossRef]
- Dombre, C.; Rigou, P.; Chalier, P. The use of active PET to package rosé wine: Changes of aromatic profile by chemical evolution and by transfers. Food Res. Int. 2015, 74, 63–71. [Google Scholar] [CrossRef]
- Schmid, P.; Welle, F. Chemical migration from beverage packaging materials—A review. Beverages 2020, 6, 37. [Google Scholar] [CrossRef]
- Sendón, R.; Sanches-Silva, A.; Bustos, J.; Martín, P.; Martínez, N.; Cirugeda, M.E. Detection of migration of phthalates from agglomerated cork stoppers using HPLC-MS/MS. J. Sep. Sci. 2012, 35, 1319–1326. [Google Scholar] [CrossRef]
- Ghoshal, G. Recent development in beverage packaging material and its adaptation strategy. Trends Beverage Packag. 2019, 16, 21–50. [Google Scholar]
- Crouvisier-Urion, K.; Bellat, J.P.; Gougeon, R.D.; Karbowiak, T. Gas transfer through wine closures: A critical review. Trends Food Sci. Technol. 2018, 78, 255–269. [Google Scholar] [CrossRef]
- Azevedo, J.; Lopes, P.; Mateus, N.; de Freitas, V. Cork, a Natural Choice to Wine? Foods 2022, 11, 2638. [Google Scholar] [CrossRef]
- Gardner, D. Innovative Packaging for the Wine Industry: A Look at Wine Closures; Virginia Tech Food Science and Technology: Blacksburg, VA, USA, 2008; p. 24061. [Google Scholar]
- Ferrara, C.; Zigarelli, V.; De Feo, G. Attitudes of a sample of consumers towards more sustainable wine packaging alternatives. J. Clean. Prod. 2020, 271, 122581. [Google Scholar] [CrossRef]
- Ferrara, C.; De Feo, G. Comparative life cycle assessment of alternative systems for wine packaging in Italy. J. Clean. Prod. 2020, 259, 120888. [Google Scholar] [CrossRef]
- Revi, M.; Badeka, A.; Kontakos, S.; Kontominas, M.G. Effect of packaging material on enological parameters and volatile compounds of dry white wine. Food Chem. 2014, 152, 331–339. [Google Scholar] [CrossRef] [PubMed]
- He, N.X.; Bayen, S. An overview of chemical contaminants and other undesirable chemicals in alcoholic beverages and strategies for analysis. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3916–3950. [Google Scholar] [CrossRef] [PubMed]
- Marsh, K.; Bugusu, B. Food packaging-Roles, materials, and environmental issues: Scientific status summary. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef]
- Thompson-Witrick, K.A.; Pitts, E.R.; Nemenyi, J.L.; Budner, D. The Impact Packaging Type Has on the Flavor of Wine. Beverages 2021, 7, 36. [Google Scholar] [CrossRef]
- Ramos, M.; Valdés, A.; Mellinas, A.C.; Garrigós, M.C. New trends in beverage packaging systems: A review. Beverages 2015, 1, 248–272. [Google Scholar] [CrossRef]
- Nakaya, M.; Uedono, A.; Hotta, A. Recent Progress in Gas Barrier Thin Film Coatings on PET Bottles in Food and Beverage Applications. Coatings 2015, 5, 987–1001. [Google Scholar] [CrossRef]
- Move over, Glass: Amcor’s New Wine Bottle is 100% Recycled PET|Packaging Dive. Available online: https://www.packagingdive.com/news/rpet-wine-bottle-amcor-plastic-ron-rubin-CO2-emissions/688809/ (accessed on 28 July 2023).
- Dombre, C.; Rigou, P.; Wirth, J.; Chalier, P. Aromatic evolution of wine packed in virgin and recycled PET bottles. Food Chem. 2015, 176, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Csiba-Herczeg, A.; Koteczki, R.; Lukács, B.; Balassa, B.E. Case study-based scenario analysis comparing GHG emissions of wine packaging types. Clean. Eng. Technol. 2023, 15, 100649. [Google Scholar] [CrossRef]
- Zmijková, D.; Švédová, B.; Růžičková, J. Polycyclic aromatic hydrocarbons in biochar originated from pyrolysis of aseptic packages (Tetra Pak®). Sustain. Chem. Pharm. 2022, 27, 100682. [Google Scholar] [CrossRef]
- TetraPak. Available online: https://www.tetrapak.com/solutions/packaging/packaging-material/materials (accessed on 8 August 2023).
- Maduwantha, M.I.P.; Jayasinghe, R.A. Possibilities of Development of Composite Materials from Tetra Pak and Metalized Film-Based Packaging Waste for Non-Structural Applications. Int. J. Sci. Eng. Sci. 2023, 7, 1–9. [Google Scholar]
- Ahuja, A.; Samyn, P.; Rastogi, V.K. Paper bottles: Potential to replace conventional packaging for liquid products. Biomass Conv. Bioref. 2022, 14, 13779–13805. [Google Scholar] [CrossRef]
- Frugalpac Frugalpac Frugal Bottle. Available online: https://frugalpac.com/frugal-bottle/ (accessed on 18 August 2023).
- Berti, L.A. Effect on Wine of Type of Packaging. Am. J. Enol. Vitic. 1950, 1, 119–123. [Google Scholar] [CrossRef]
- Versari, A.; Ricci, A.; Moreno, C.P.; Parpinello, G.P. Packaging of Wine in Aluminum Cans–A Review. Am. J. Enol. Vitic. 2023, 74, 0740022. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Panjagari, N.R. Review on metal packaging: Materials, forms, food applications, safety and recyclability. J. Food Sci. Technol. 2020, 57, 2377–2392. [Google Scholar] [CrossRef]
- Tsalbouris, A.; Kalogiouri, N.P.; Kabir, A.; Furton, K.G.; Samanidou, V.F. Bisphenol A migration to alcoholic and non-alcoholic beverages–An improved molecular imprinted solid phase extraction method prior to detection with HPLC-DAD. Microchem. J. 2021, 162, 105846. [Google Scholar] [CrossRef]
- Fasano, E.; Bono-Blay, F.; Cirillo, T.; Montuori, P.; Lacorte, S. Migration of phthalates, alkylphenols, bisphenol A and di(2-ethylhexyl)adipate from food packaging. Food Control 2012, 27, 132–138. [Google Scholar] [CrossRef]
- Montgomery, A.; Allison, R.B.; Goddard, J.M.; Sacks, G.L. Hydrogen Sulfide Formation in Canned Wines Under Long-Term and Accelerated Conditions. Am. J. Enol. Vitic. 2023, 74, 0740011. [Google Scholar] [CrossRef]
- Castle, L. Chemical migration into food: An overview. In Chemical Migration and Food Contact Materials, 1st ed.; Karen, A., Barnes, C., Sinclair, R., Watson, D.H., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2007; pp. 1–12. [Google Scholar]
- Simoneau, C. Chapter 21 Food Contact Materials. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2008; pp. 733–773. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1935/2004 on Materials and Articles Intended to Come into Contact with Food; European Commission: Brussels, Belgium, 2004. [Google Scholar]
- European Commission. Commission Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- European Commission. Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013 Establishing a Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- European Commission. Regulation (EU) No 251/2014 of the European Parliament and of the Council of 26 February 2014 on the Definition, Description, Presentation, Labelling and the Protection of Geographical Indications of Aromatised Wine Products and Repealing Council Regulation (EEC) No 1601/91; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- The Importance of pH in Wine Making-Sensorex Liquid Analysis Technology. Available online: https://sensorex.com/ph-wine-making/ (accessed on 14 April 2024).
- Geueke, B. FPF Dossier: Non-Intentionally Added Substances (NIAS), FPF Dossier: Non-Intentionally Added Substances (NIAS) 2015 (zenodo.org); Zenodo: Geneve, Switzerland, 2022. [Google Scholar] [CrossRef]
- Tsochatzis, E.D. Food Contact Materials: Migration and Analysis. Challenges and Limitations on Identification and Quantification. Molecules 2021, 26, 3232. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzis, E.D.; Lopes, J.A.; Hoekstra, E.; Emons, H. Development and validation of a multi-analyte GC-MS method for the determination of 84 substances from plastic food contact materials. Anal. Bioanal. Chem. 2020, 412, 5419–5434. [Google Scholar] [CrossRef] [PubMed]
- Brenz, F.; Linke, S.; Simat, T. Linear and cyclic oligomers in polybutylene terephthalate for food contact materials. Food Addit. Contam. Part. A 2018, 35, 583–598. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzis, E.D.; Gika, H.; Theodoridis, G. Development and validation of a fast gas chromatography mass spectrometry method for the quantification of selected non-intentionally added substances and polystyrene/polyurethane oligomers in liquid food simulants. Anal. Chim. Acta. 2020, 1130, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, M.; de Voogt, P.; Franz, R. Identification and quantification of oligomers as potential migrants in plastics food contact materials with a focus in polycondensates–A review. Trends Food Sci. Technol. 2016, 50, 118–130. [Google Scholar] [CrossRef]
- Nerin, C.; Alfaro, P.; Aznar, M.; Domeño, C. The challenge of identifying non-intentionally added substances from food packaging materials: A review. Anal. Chim. Acta. 2013, 775, 14–24. [Google Scholar] [CrossRef] [PubMed]
- European Union. Commission Regulation (EU) 2022/1616 on Recycled Plastic Materials and Articles Intended to Come into Contact with Foods, and Repealing Regulation (EC) No 282/2008; European Union: Maastricht, The Netherlands, 2022. [Google Scholar]
- Directive 84/500/EEC. Council Directive of 15 Oct. 1984 on the Approximation of the Laws of the Member States Relating to Ceramic Articles Intended to Come into Contact with Foodstuffs. 1984. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31984L0500. (accessed on 14 April 2024).
- European Commission. Commission Directive 2005/31/EC of 29 April 2005 Amending Council Directive 84/500/EEC as Regards a Declaration of Compliance and Performance Criteria of the Analytical Method for Ceramic Articles Intended to Come into Contact with Foodstuffs; European Commission: Brussels, Belgium, 2005. [Google Scholar]
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and European Commission, Repealing Regulation (EC) No 1881/2006; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- International Organization for Vine and Wine, Compendium Of International Methods Of Wine And Must Analysis, OIV-MA-C1-01 Maximum Acceptable Limits of Various Substances Contained in Wine, 2019 Issue. Available online: https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis/annex-c/annex-c-maximum-acceptable-limits-of-various-substances/maximum-acceptable (accessed on 13 April 2024).
- International Organization of Vine and Wine, OIV Guide to Identify Hazards, Critical Control Points and Their Management in the Wine Industry, RESOLUTION OIV-OENO 630-2020. Available online: https://www.oiv.int/standards/oiv-guide-to-identify-hazards%2C-critical-control-points-and-their-management-in-the-wine-industry (accessed on 1 July 2024).
- Varea, S.; García-Vallejo, M.C.; Cadahía, E.; Fernández de Simón, B. Polyphenols susceptible to migrate from cork stoppers to wine. Eur. Food Res. Technol. 2001, 213, 56–61. [Google Scholar] [CrossRef]
- Azevedo, J.; Fernandes, I.; Lopes, P.; Roseira, I.; Cabral, M.; Mateus, N.; Freitas, V. Migration of phenolic compounds from different cork stoppers to wine model solutions: Antioxidant and biological relevance. Eur. Food Res. Technol. 2014, 239, 951–960. [Google Scholar] [CrossRef]
- Reis, S.F.; Coelho, E.; Evtuguin, D.V.; Coimbra, M.A.; Lopes, P.; Cabral, M.; Mateus, N.; Freitas, V. Migration of Tannins and Pectic Polysaccharides from Natural Cork Stoppers to the Hydroalcoholic Solution. J. Agric. Food Chem. 2020, 68, 14230–14242. [Google Scholar] [CrossRef] [PubMed]
- Minnaar, P.P.; Gerber, P.; Booyse, M.; Jolly, N. Phenolic Compounds in Cork-Closed Bottle-Fermented Sparkling Wines. S. Afr. J. Enol. Vitic. 2021, 42, 19–24. [Google Scholar] [CrossRef]
- Cravero, M.C. Musty and Moldy Taint in Wines: A Review. Beverages 2020, 6, 41. [Google Scholar] [CrossRef]
- Pereira, C.S.; Figueiredo Marques, J.J.; San Romão, M.V. Cork Taint in Wine: Scientific Knowledge and Public Perception—A Critical Review. Crit. Rev. Microbiol. 2000, 26, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Buser, H.R.; Zanier, C.; Tanner, H. Identification of 2,4,6-trichloroanisole as a potent compound causing cork taint in wine. J. Agric. Food Chem. 1982, 30, 359–362. [Google Scholar] [CrossRef]
- Slabizki, P.; Legrum, C.; Wegmann-Herr, P.; Fischer, C.; Schmarr, H.-G. Quantification of cork off-flavor compounds in natural cork stoppers and wine by multidimensional gas chromatography mass spectrometry. Eur. Food Res. Technol. 2016, 242, 977–986. [Google Scholar] [CrossRef]
- Juanola, R.; Subirà, D.; Salvadó, V.; Garcia Regueiro, J.A.; Anticó, E. Migration of 2,4,6-trichloroanisole from cork stoppers to wine. Eur. Food Res. Technol. 2005, 220, 347–352. [Google Scholar] [CrossRef]
- Chatonnet, P.; Labadie, D.; Boutou, S. Simultaneous assay of chlorophenols and chloroanisoles in wines and corks or cork-based stoppers application in determining the origin of pollution in bottled wines. J. Int. Sci. Vigne Vin. 2003, 37, 181–193. [Google Scholar] [CrossRef]
- Weingart, G.; Schwartz, H.; Eder, R.; Sontag, G. Determination of geosmin and 2,4,6-trichloroanisole in white and red Austrian wines by headspace SPME-GC/MS and comparison with sensory analysis. Eur. Food Res. Technol. 2010, 231, 771–779. [Google Scholar] [CrossRef]
- Ezquerro, O.; Tena, M.T. Determination of odour-causing volatile organic compounds in cork stoppers by multiple headspace solid-phase microextraction. J. Chromatogr. A 2005, 1068, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xie, Y.; Wu, T.; Wang, X.; Gao, J.; Tian, B.; Huang, W.; You, Y.; Zhan, J. Cork taint of wines: The formation, analysis, and control of 2,4,6-trichloroanisole. Food Innov. Adv. 2024, 3, 111–125. [Google Scholar] [CrossRef]
- Six, T.; Feigenbaum, A. Mechanism of migration from agglomerated cork stoppers. Part 2: Safety assessment criteria of agglomerated cork stoppers for champagne wine cork producers, for users and for control laboratories. Food Addit. Contam. 2003, 20, 960–971. [Google Scholar] [CrossRef]
- Jiang, G.; Liu, J.; Zhou, Q. Search for the Contamination Source of Butyltin Compounds in Wine: Agglomerated Cork Stoppers. Environ. Sci. Technol. 2004, 38, 4349–4352. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, G. Survey on the Presence of Butyltin Compounds in Chinese Alcoholic Beverages, Determined by Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Flame Photometric Detection. J. Agric. Food Chem. 2002, 50, 6683–6687. [Google Scholar] [CrossRef]
- Vera, P.; Canellas, E.; Nerín, C.; Dreolin, N.; Goshawk, J. The migration of NIAS from ethylene-vinyl acetate corks and their identification using gas chromatography mass spectrometry and liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry. Food Chem. 2022, 366, 130592. [Google Scholar] [CrossRef]
- Canellas, E.; Vera, P.; Nerin, C.; Goshawk, J.; Dreolin, N. The application of ion mobility time of flight mass spectrometry to elucidate neo-formed compounds derived from polyurethane adhesives used in champagne cork stoppers. Talanta 2021, 234, 122632. [Google Scholar] [CrossRef]
- Corona, T.; Iglesias, M.; Anticó, E. Migration of Components from Cork Stoppers to Food: Challenges in Determining Inorganic Elements in Food Simulants. J. Agric. Food Chem. 2014, 62, 5690–5698. [Google Scholar] [CrossRef]
- Fasano, E.; Cirillo, T.; Esposito, F.; Lacorte, S. Migration of monomers and plasticizers from packed foods and heated microwave foods using QuEChERS sample preparation and gas chromatography/mass spectrometry. LWT-Food Sci. Technol. 2015, 64, 1015–1021. [Google Scholar] [CrossRef]
- Chatonnet, P.; Boutou, S.; Plana, A. Contamination of wines and spirits by phthalates: Types of contaminants present, contamination sources and means of prevention. Food Addit. Contam. Part A 2014, 31, 1605–1615. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.L.; Algarra, M.; Câmara, J.S. Monitoring Phthalates in Table and Fortified Wines by Headspace Solid-Phase Microextraction Combined with Gas Chromatography−Mass Spectrometry Analysis. J. Agric. Food Chem. 2020, 68, 8431–8437. [Google Scholar] [CrossRef]
- Sagratini, G.; Caprioli, G.; Cristalli, G.; Giardiná, D.; Ricciutelli, M.; Volpini, R.; Zuo, Y.; Vittori, S. Determination of ink photoinitiators in packaged beverages by gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry. J. Chrom. A 2008, 1194, 213–220. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials; Enzymes and Processing Aids (CEP). Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2023, 21, 6857. [Google Scholar]
- European Union. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures, Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No 1907/2006; European Union: Maastricht, The Netherlands, 2008. [Google Scholar]
- European Commission. Commission Recommendation (EU) 2019/794 of 15 May 2019 on a Coordinated Control Plan with a View to Establishing the Prevalence of Certain Substances Migrating from Materials and Articles Intended to Come into Contact with Food (Notified under Document C (2019) 3519); European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Gonzalez-Adrados, J.R.; Gonzalez-Hernandez, F.; Garcia De Ceca, J.L.; Caceres-Esteban, M.J.; García-Vallejo, M.C. Cork-wine interaction studies: Liquid absorption and non-volatile compound migration. J. Int. Sci. Vigne Vin. 2008, 42, 161–166. [Google Scholar] [CrossRef]
- Prata, J.C.; Paçoa, A.; Reisa, V.; da Costa, J.P.; Fernandes, A.J.S.; Mendes da Costa, F.; Duarte, A.C.; Rocha-Santos, T. Identification of microplastics in white wines capped with polyethylene stoppers using micro-Raman spectroscopy. Food Chem. 2020, 331, 127323. [Google Scholar] [CrossRef] [PubMed]
- Kadac-Czapska, K.; Knez, E.; Grembecka, M. Food and human safety: The impact of microplastics. Crit. Rev. Food Sci. Nutr. 2024, 64, 3502–3521. [Google Scholar] [CrossRef]
- Tsochatzis, E.D.; Lopes, J.A.; Kappenstein, O.; Tietz, T.; Hoekstra, E.J. Quantification of PET cyclic and linear oligomers in teabags by a validated LC-MS method–In silico toxicity assessment and consumer’s exposure. Food Chem. 2020, 317, 126427. [Google Scholar] [CrossRef]
- Iannone, A.; Di Fiore, C.; Carriera, F.; Avino, P.; Stillittano, V. Phthalates: The Main Issue in Quality Control in the Beverage Industry. Separations 2024, 11, 133. [Google Scholar] [CrossRef]
- Freitas, F.; Cabrita, M.J.; da Silva, M.G. A Critical Review of Analytical Methods for the Quantification of Phthalates Esters in Two Important European Food Products: Olive Oil and Wine. Molecules 2023, 28, 7628. [Google Scholar] [CrossRef]
- Benito, S. The Management of Compounds that Influence Human Health in Modern Winemaking from an HACCP Point of View. Fermentation 2019, 5, 33. [Google Scholar] [CrossRef]
- Hortolomeu, A.; Mirila, D.-C.; Georgescu, A.-M.; Rosu, A.-M.; Scutaru, Y.; Nedeff, F.-M.; Sturza, R.; Nistor, I.D. Retention of Phthalates Wine Using Nanomaterials as Chemically Modified Clays with H20,H30, H40 Boltron Dendrimers. Nanomaterials 2023, 13, 2301. [Google Scholar] [CrossRef] [PubMed]
- Movalli, P.; Biesmeijer, K.; Gkotsis, G.; Alygizakis, N.; Nika, M.C.; Vasilatos, K.; Kostakis, M.; Thomaidis, N.S.; Oswald, P.; Oswaldova, M.; et al. High resolution mass spectrometric suspect screening, wide-scope target analysis of emerging contaminants and determination of legacy pollutant in adult black-tailed godwit Limosa limosa limosa in the Netherlands–A pilot study. Chemosphere 2023, 321, 138145. [Google Scholar] [CrossRef] [PubMed]
- Aalizadeh, R.; Nikolopoulou, V.; Alygizakis, N.; Thomaidis, N.S. First Novel Workflow for Semiquantification of Emerging Contaminants in Environmental Samples Analyzed by Gas Chromatography−Atmospheric Pressure Chemical Ionization−Quadrupole Time of Flight−Mass Spectrometry. Anal. Chem. 2022, 94, 9766–9774. [Google Scholar] [CrossRef] [PubMed]
- Hollender, J.; Schymanski, E.L.; Ahrens, L.; Alygizakis, N.; Béen, F.; Bijlsma, L.; Brunner, A.M.; Celma, A.; Fildier, A.; Fu, Q.; et al. NORMAN guidance on suspect and non-target screening in environmental monitoring. Environ. Sci. Eur. 2023, 35, 75. [Google Scholar] [CrossRef]
- Aalizadeh, R.; Nikolopoulou, V.; Alygizakis, N.; Slobodnik, J.; Thomaidis, N.S. A novel workflow for semi-quantification of emerging contaminants in environmental samples analyzed by LC-HRMS. Anal. Bioanal. Chem. 2022, 414, 7435–7450. [Google Scholar] [CrossRef]
Chemical Hazard | Stage of Occurence | Source of Contamination |
---|---|---|
Residues of fats, oils, etc. | Reception of harvest Crushing Pressing Bottling Tirage | Use of lubricants for mobile mechanisms in reception, harvest, crushing, pressing, and bottling |
Metals or trace elements very toxic (Pb, etc.) | Transport and reception of harvest Crushing Must clarification Alcoholic fermentation (A.F.) Fermentation and storage in vats of concrete uncoated, or equipment with non-food complements or not suitable for must or wine, paints and ceramics for non-food use, etc. | Use of obsolete and deteriorated equipment or not suitable for must or wine |
Low or non-toxic metals | Transport and reception of harvest Crushing Must clarification Alcoholic fermentation (A.F.) Racking Clarification Tirage 2nd. Fermentation–Maturation | Use of equipment with non-food attachments or not suitable for must or wine |
Bisphenol A and diglycidyl ether of Bisphenol | Must clarification Alcoholic fermentation Malolactic fermentation Wine maturation/storage | Use of equipment coated with epoxy-phenolic resins deteriorated or epoxy-phenolic resins poorly cured or not suitable for must or wine that can release their components |
Polycyclic Aromatic Hydrocarbons | Maturation in oak | Excessive toasting of oak to be in contact with wine. A degree of over-toasting, mainly obtained by direct fire, could increase the frequency. Wildfire near a vineyard or winery |
Phthalates, Nonylphenols | Alcoholic fermentation Wine maturation/stockage Bottling | Plastic containers Equipment coated with epoxy resins containing phthalates deteriorated Plastic hoses deteriorated Plastic bottles and bag-in-box Materials not suitable for must or wine |
Persistent organic compounds: biphenyl polychlorinated compounds, dioxins, furans |
| These substances are environmental contaminants and they could be transferred into the oak wood and cork which would be in contact with the wine. |
Wine Contact Article (Number of Samples) | Migration Conditions - Simulant/Volume - Migration Method - Time (Days) - Temperature (°C) | Sample Preparation | Analytical Method Identification/Quantification | Migrating Substances | Concentration Levels | LODs | Ref |
---|---|---|---|---|---|---|---|
Plastic wine closure Mixed plastic foam (n = 2) | - 15% ethanol/50 mL - immersion (31 cm2) - 10 days - 40 °C | SPE: Oasis HLB, elution with 10 mL of dichloromethane:hexane (1:1) and 10 mL dichloromethane:acetone (1:1), Reconstitution: 240 uL of ethyl acetate | GC-MS Identification: 3 ions per compound Quantification: Deuterated surrogate standards (NP D8, DPP D4 and BPA D16 & anthracene D10) | - Phthalates | 17 ng/L (NP) up to 451 ng/L (DEHP) | [36] | |
DMP | 155–375 ng/L | ||||||
DBP | 1398–1948 ng/L | ||||||
BBP | 151–355 ng/L | ||||||
DEHP | 10,999–17,694 ng/L | ||||||
- Alkylphenols | |||||||
OP | 25,676–27,956 ng/L | ||||||
NP | 451–1368 ng/L | ||||||
- DEHA | 780–1470 ng/L | ||||||
- Bisphenol A | <LOD (21 ng/L) | ||||||
Cork agglomerated stoppers (n = 3) | - 12% ethanol, pH = 3/250 mL - immersion - 10 days - 40 °C | Liquid-liquid extraction with 3 mL CH2Cl2 and salt (NaCl) assisted | GC-MS Identification: not reported Quantification: internal standard dibutyl phthalate | Phthalates | DEHP < 50 (ng/mL) | not reported | [71] |
Cork agglomerated stoppers (n = 28) | - Wine/ 30 mL - immersion (0.5 g of shattered cork) - 30 d - room temperature - stored hermetically in nitrogen-charged glass vials | Hydride derivatization HS-SPME with 100 μm poly-(dimethylsiloxane) (PDMS) coated fibers | GC-FPD GC-MS | Organotins | not reported | [72,73] | |
Monobutyltin | <0.0024–3.3 μg of Sn/g | ||||||
Dibutyltin | <0.0029–6.7 μg of Sn/g | ||||||
Cork Plastic Ethylene–vinyl acetate (EVA) (n = 8) | A. 3% v/v aq. acetic acid B. 20% aq. ethanol - immersion - 10 days - 60 °C | SPME polydimethylsiloxane (PDMS) | GC-EI-MS NIST and WILEY mass spectra libraries. Standards for - BHT - 2,6-bis(1,1-dimethylethyl)-4-ethyl phenol - 7,9-ditert-butyl-1-oxaspiro [4.5]deca-6,9-diene-2,8- dione | IAS: | [74] | ||
- BHT (Antioxidant) | <LOD—15 (μg/kg) | 0.4 μg/kg | |||||
- 2,6-bis(1,1-dimethylethyl)-4-ethyl phenol | <LOD—6.8 μg/kg | 0.5 μg/kg | |||||
NIAS: | |||||||
- 2,2,4,6,6-pentamethyl heptane | <LOQ—18.2 (μg/kg) | 0.3 μg/kg | |||||
- 2,2,4,4,6,8,8-heptamethyl nonane | <LOD—1.6 (μg/kg) | 0.3 μg/kg | |||||
- Branched alkanes (1 & 2) | <LOQ—2.3 (μg/kg) | 0.3 μg/kg | |||||
- 7,9-ditert-butyl-1-oxaspiro [4.5]deca-6,9-diene-2,8- dione | see LC-MS section | ||||||
Cork Agglomerated stoppers (n = 21) | - 12% ethanol - immersion (surface/volume ratios: 8.94 and 12.44 dm2 L−1. - 2 h - 70 °C | Filtration | HPLC-ESI (+) MS/MS Column: C18 (ODS) 4 mm × 3.0 mm ID Mobile phase: (A) 0.1% acetic acid in water and (B) 0.1% acetic acid in methanol Identification: Retention time & Ratio of two selected transitions Quantification: Reference standards | Phthalates: BBP DBP DEHP DiDP DIP DiNP DMIP DA DPP | <LOQ | LOQs 0.15 mg/L (BBP)– 0.57 mg/L (DiNP) | [11] |
Cork agglomerated stoppers polyurethane adhesives (n = 2) | A. 3% v/v aq. acetic acid B. 20% aq.ethanol C. Champagne 11.5% vol - 200 mL bottles sealed with tested corks horizontally laid - 10 d - 60 °C | Dilution 1/10 (v/v) of champagne samples with ultrapure water prior to injection. | UPLC-IM-ESI (+) Q/TOF for Column: BEH C18 column (1.7 μm particle size, 2.1 mm × 100 mm) Mobile phase: (A) 0.1% formic acid in water and (B) 0.1% formic acid in methanol Identification: comparison of accurate mass spectra with the fragmentation patterns of proposed candidates. UPLC- ESI (+)-TQ-MS: Quantification: External calibration with certified standards of the two amines. Semi-quantification for the rest of the identified compounds | NIAS: (16 compounds) Reaction products of residual hexamethylene diisocyanate and isophorone diisocyanate with H2O, ethanol, acetic acid, malic acid and tartaric acid such as: | 70–721 (ng/g) | <5 ng/g wine simulants – <30 ng/g in champagne | [75] |
- 1,6-Hexanediamine | |||||||
- Isophorone diamine | |||||||
- N-(6-aminohexyl)acetamide | |||||||
- Ethyl (6-aminohexyl)carbamate | |||||||
- 2-hydroxy-N-(6-isocyanatohexyl) propenamide | |||||||
- N1-(6-aminohexyl)-2,3-dihydroxy-N4-(6 propionamidohexyl) succinanamide | |||||||
Cork Plastic Ethylene–vinyl acetate (EVA) (n = 8 × 3) | A. 3% v/v aq. acetic acid B. 20% aq. ethanol/125 mL - immersion (half cork 2.2 × 4.3 cm) - 10 days - 60 °C | none | UHPLC-IMS ESI (+/−) -QTOF Column: BEH C18 column (1.7 μm particle size, 2.1 mm × 100 mm) Mobile phase: (A) 0.1% formic acid in water and (B) 0.1% formic acid in methanol Identification: Retention time, product ions, CCS values Quantification: Reference standards or semi quantification | IAS: | [74] | ||
- Irganox 1010 | <LOD—<LOQ | 22 μg/kg | |||||
- Irganox 1076 | <LOD—<LOQ | 11 μg/kg | |||||
- EBO | <LOD—140 μg/kg | 6.8 μg/kg | |||||
- N,N′-1,2-ethanediylbis octadecanamide | 65.8–213 μg/kg | 18 μg/kg | |||||
- Irgafos 168 | <LOD—53.4 μg/kg | 8.5 μg/kg | |||||
- N,N′-ethylenebispalmitamide | 64.1–152 μg/kg | 18 μg/kg | |||||
- Butyl 4-hydroxybenzoate | <LOD—105 μg/kg | 1 μg/kg | |||||
NIAS: | |||||||
Cyclic oligomers (C2H4)n(C4H6O2)m (n: 1–13 & m: 2–4) | 47–315 μg/kg (sum) | 9.8 μg/kg | |||||
Break-down products | |||||||
- 7,9-ditert-butyl-1 oxaspiro[4.5]deca-6,9-diene-2,8-dione | <LOD—654 (μg/kg) | 5.5 μg/kg | |||||
Oxidation products | |||||||
- Irgafos 168 oxo | <LOD—87.4 μg/kg | 15 μg/kg | |||||
Cork stoppers (n = 3) | A. 12% ethanol B. 20% ethanol - immersion (4 g of cork granules in 100 mL) - 10 d - 40 °C | Filtration with glass wool-Addition of HNO3 | ICP- AES and Quantification with internal standards (Y & Rh) | Ba, Mn, Al, | 4 μg kg−1 (Cd)– 28,000 μg kg−1 (Al) (concentrations given in kilograms of cork) Cr: not determined | not reported | [76] |
ICP-MS Quantification with internal standards (103Rh) | Cr, Fe, Ni, Cu, Zn, Pb, Cd, As, Se |
Sample (Number of Samples) Wine Contact Article | Sample Preparation | Analytical Method Identification/Quantification | Compounds | Concentration Levels | LODs | Ref |
---|---|---|---|---|---|---|
Red & white wine commercially available | Heating at 80 °C for 10 min MIP-SPE (0.5 mL sample, 50 mg of mass sorbent elution with 2 mL ACN). Reconstitution 0.5 mL ACN:H2O (70/30) Filtration: 0.22 μm nylon membrane syring filters | HPLC-DAD Column: RP-18 (250 × 4 mm, 5 μm particle size) Mobile phase: acetonitrile: water (70:30%, v/v) Wavelength: 230 nm. Identification: retention time DAD spectrum Quantification: External standard calibration curve | Bisphenol A | LOD: 3 ng/mL LOQ: 11 ng/mL | [35] | |
PET bottle with aluminum cap (n = 4) | 11–30 ng/mL | |||||
PET (n = 4) | not detected | |||||
Red (n = 2) & white (n = 2) wine Aseptic plastic laminate paperboard carton (tetrapack) | QuEChERS extraction (10 mL ACN sorbents: sodium citrate, sodium hydrogen citrate, magnesium sulfate and sodium chloride, primary secondary amine (PSA), C18 EC and magnesium sulfate) | GC-MS Column: DB-5MS coated with 5% phenyl-95% dimethylpolysiloxane. Identification: SIM mode 3 ions per compound. Quantification: External std calibration & surrogate standards | DBP | 5.86–9.72 ng/mL | 0.02 ng/mL (DEHA) up to 2.25 ng/mL (DEHP) | [77] |
BBP | 1.69–3.70 ng/mL | |||||
DEHP | <LOD | |||||
OP | 0.42–1.14 ng/mL | |||||
NP | <LOD | |||||
Bisphenol A | <LOD—1.02 ng/mL | |||||
DEHA | 1.28–2.68 ng/mL | |||||
Wine Market-ready French products (n = 100) | Liquid -liquid extraction with isohexane | GC-MS Column: DB-5MS Identification: SIM mode 3 ions per compound. Quantification standard calibration (0–1 mg L−1) and deuterated internal standards | DBP | <LOD—2.212 mg/kg | 0.004 mg/L (DMP) up to 0.020 mg/L (DINP) | [78] |
BBP | <LOD—0.122 mg/kg | |||||
DEHP | <LOD—1.1317 mg/kg | |||||
DiBP, DnBP, DCHP, DnOP, DINP and DIDP DMP, DEP | <LOD (for the rest of the analytes) | |||||
Table wines 12%, (v/v) (n = 10) Local producers –processed in stainless-steel vat. | HS−SPME: PDMS/DVB fiber–2 mL of sample and 0.2 g of NaCl. 80 °C/30min | GC-MS Column: HP-5 Identification: scan mode (m/z 30−300) NIST05 mass spectral library similarity threshold ≥ 80%, as well as the standards. Quantification: reference standards calibration | DBP | 0.71–20.8 μg/L | 0.03 μg/L (DBP) to 0.07 μg/L (BBP) | [79] |
DOP | 1.02–2.20 μg/L | |||||
BDE | <LOD—1.17 μg/L | |||||
BBP | <LOD | |||||
Fortified wines 18−19% (v/v) (n = 10) Matured in oak casks | DBP | 1.66–23.2 μg/L | 0.04 μg/L (DBP) to 0.11 μg/L (BDE) | |||
DOP | <LOD—2.44 μg/L | |||||
BDE | <LOD | |||||
BBP | <LOD | |||||
Red & white wine (n = 11) Polycoupled carton packagings | Liquid-liquid extraction with n-hexane Purification: DSC-Si Silica cartridge Reconstitution: n-heane/ethylacetate (30/70) and methanol for LC/MSMS | GC–MS Column: HP-5MS Identification: SIM mode 2–5 ions per compound. Quantification reference standards Confirmation: LC/Atmospheric-Pressure PhotoIonization (APPI)/MS/MS | Ink photoinitiators: | 0.2 μg/L (Benzophenone) up to 1 μg/L (IRGACURE184) | [80] | |
Benzophenone | 5.5–217 μg/L | |||||
ITX | <LOD—0.24 μg/L | |||||
IRGACURE 184 | <LOD—1.2 μg/L | |||||
EDAB | <LOD | |||||
EHDAB | <LOD |
Substance Name | FCM Sub No | CAS No | Molecular Formula | Molecular Weight (Da) | Function | SML mg/kg | Concentrations Quantified (mg/kg Wine or Simulant) | Ref |
---|---|---|---|---|---|---|---|---|
BBP | 159 | 85-68-7 | C19H20O4 | 312.4 | Plasticizer | 30 | 0.15 × 10−3–0.122 | [36,77,78,79] |
DBP | 157 | 84-74-2 | C16H22O4 | 278.3 | Plasticizer | 0.3 | 0.71 × 10−3–2.212 | [36,77,78,79] |
DEHA | 207 | 103-23-1 | C22H42O4 | 370.6 | Plasticizer | 18 | 1.28 × 10−6–1.470 × 10−3 | [36,77] |
DEHP | 283 | 117-81-7 | C24H38O4 | 390.6 | Plasticizer | 1.5 | 11.0 × 10−3–1.1317 | [36,78] |
DIDP | 729 | 68515-49-1; 26761-40-0 | C28H46O4 | 446.7 | Plasticizer | 9 | <0.57 | [11,78] |
DINP | 728 | 68515-48-0; 28553-12-0 | C26H42O4 | 418.6 | Plasticizer | 9 | <0.57 | [11,78] |
2,6-Bis(1,1-dimethylethyl)-4-ethyl phenol | 477 | 4130–42-1 | C16H26O | 234.4 | Additive | 4.8 | <0.5 × 10−3–6.8 × 10−3 | [74] |
N,N′-Ethylenebispalmitamide | 488 | 5518-18-3 | C34H68N2O2 | 536.9 | Additive | nd | 0.0641–0.152 | [74] |
BHT | 315 | 128–37-0 | C15H24O | 220.3 | Antioxidant | 3 | <0.4 × 10−3–15 × 10−3 | [74] |
Irgafos 168 | 671 | 31570–04-4 | C42H63O3P | 646.9 | Antioxidant | nd | <0.0085–0.0534 | [74] |
Irganox 1010 | 496 | 6683-19-8 | C73H108O12 | 1178 | Antioxidant | nd | <0.022 | [74] |
Irganox 1076 | 433 | 2082-79-3 | C35H62O3 | 530.9 | Antioxidant | 6 | <0.011 | [74] |
EBO | 251 | 110-31-6 | C38H72N2O2 | 589.0 | Lubricant | nd | <0.0068–0.140 | [74] |
N,N′-1,2-ethanediylbis octadecanamide | 250 | 110-30-5 | C38H76N2O2 | 593.0 | Lubricant | nd | 0.0658–0.213 | [74] |
Benzophenone | 286 | 119-61-9 | C13H10O | 182.2 | Ink photoinitiators | 0.6 | 5.5 × 10−3–0.217 | [80] |
BPA | 151 | 80-05-7 | C15H16O2 | 228.3 | Monomer | 0.05 | 0.011–0.03 | [35,36,77] |
Element | SML mg/kg | Concentrations Quantified (mg/kg Simulant) |
---|---|---|
Al | 1 | not available |
Ba | 1 | 0.038–0.37 |
Cu | 5 | 0.052–0.18 |
Fe | 48 | 0.101–0.43 |
Mn | 0.6 | 0.30–0.116 |
Zn | 5 | 0.080–1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maragou, N.C.; Tzachristas, A.; Tsochatzis, E.D.; Thomaidis, N.S. Chemical Migration from Wine Contact Materials. Appl. Sci. 2024, 14, 6507. https://doi.org/10.3390/app14156507
Maragou NC, Tzachristas A, Tsochatzis ED, Thomaidis NS. Chemical Migration from Wine Contact Materials. Applied Sciences. 2024; 14(15):6507. https://doi.org/10.3390/app14156507
Chicago/Turabian StyleMaragou, Niki C., Alexandros Tzachristas, Emmanouil D. Tsochatzis, and Nikolaos S. Thomaidis. 2024. "Chemical Migration from Wine Contact Materials" Applied Sciences 14, no. 15: 6507. https://doi.org/10.3390/app14156507
APA StyleMaragou, N. C., Tzachristas, A., Tsochatzis, E. D., & Thomaidis, N. S. (2024). Chemical Migration from Wine Contact Materials. Applied Sciences, 14(15), 6507. https://doi.org/10.3390/app14156507