Aromatic Amines in Organic Synthesis Part III; p-Aminocinnamic Acids and Their Methyl Esters
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis
3.1.1. Synthesis of the Amine Derivatives of Cinnamic Acid
3.1.2. Synthesis of the Methyl p-(Dimethylamino)cinnamate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malkin, J. Photophysical and Photochemical Properties of Aromatic Compounds; CRC: Boca Raton, FL, USA, 1992. [Google Scholar]
- Li, X.; Gao, X.; Shi, W.; Ma, H. Design Strategies for Water-Soluble Small Molecular Chromogenic and Fluorogenic Probes. Chem. Rev. 2014, 114, 590–659. [Google Scholar] [CrossRef] [PubMed]
- Lavis, L.D.; Raines, R.T. Bright Ideas for Chemical Biology. ACS Chem. Biol. 2008, 3, 142–155. [Google Scholar] [CrossRef]
- Costero, A.M.; Bañuls, M.J.; Aurell, M.J.; Ochando, L.E.; Doménech, A. Cation and anion fluorescent and electrochemical sensors derived from 4,4′-substituted biphenyl. Tetrahedron 2005, 61, 10309–10320. [Google Scholar] [CrossRef]
- Krawczyk, P.; Jędrzejewska, B.; Pietrzak, M.; Janek, T. Synthesis, spectroscopic, physicochemical properties and binding site analysis of 4-(1H-phenanthro [9,10-d]-imidazol-2-yl)-benzaldehyde fluorescent probe for imaging in cell biology: Experimental and theoretical study. J. Photochem. Photobiol. B Biol. 2016, 164, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-L.; Yang, L.-N.; Li, Z.-S. How to design more efficient organic dyes for dye-sensitized solar cells? Adding more sp2-hybridized nitrogen in the triphenylamine donor. J. Power Sources 2013, 223, 86–93. [Google Scholar] [CrossRef]
- Cook, W.D.; Chen, F. Enhanced photopolymerization of dimethacrylates with ketones, amines, and iodonium salts: The CQ system. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 5030–5041. [Google Scholar] [CrossRef]
- Chen, H.; Vahdati, M.; Xiao, P.; Dumur, F.; Lalevée, J. Water-Soluble Visible Light Sensitive Photoinitiating System Based on Charge Transfer Complexes for the 3D Printing of Hydrogels. Polymers 2021, 13, 3195. [Google Scholar] [CrossRef] [PubMed]
- Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals: Looking beyond intuition. Science 2007, 317, 1881–1886. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, A.; Kostadinov, A.; Ivanov, D.; Dimov, D.; Stoyanov, S.; Nedelchev, L.; Nazarova, D.; Yancheva, D. Synthesis, spectroscopic and TD-DFT quantum mechanical study of azo-azomethine dyes. A laser induced trans-cis-trans photoisomerization cycle. Spectrochim. Acta Part A 2018, 192, 263–274. [Google Scholar] [CrossRef]
- Hubenova, Y.; Todorova, M.; Bakalska, R.; Mitov, M. Photophysical and Electrochemical Properties of Newly Synthesized Stilbazolium Dyes. ChemElectroChem 2022, 9, e202200918. [Google Scholar] [CrossRef]
- Luo, P.; Wang, M.; Liu, W.; Liu, L.; Xu, P. Activity-Based Fluorescent Probes Based on Hemicyanine for Biomedical Sensing. Molecules 2022, 27, 7750. [Google Scholar] [CrossRef]
- Mustroph, H. Hemicyanine dyes. Phys. Sci. Rev. 2023, 8, 1367–1379. [Google Scholar] [CrossRef]
- Mustroph, H. Merocyanine dyes. Phys. Sci. Rev. 2022, 7, 143–158. [Google Scholar] [CrossRef]
- Saady, A.; Varon, E.; Jacob, A.; Shav-Tal, Y.; Fischer, B. Applying styryl quinolinium fluorescent probes for imaging of ribosomal RNA in living cells. Dyes Pigment. 2020, 174, 107986. [Google Scholar] [CrossRef]
- Albelwi, F.F.; Al-anazi, M.; Naqvi, A.; Hritani, Z.M.; Okasha, R.M.; Afifi, T.H.; Hagar, M. Novel oxazolones incorporated azo dye: Design, synthesis photophysical-DFT aspects and antimicrobial assessments with In-silico and In-vitro surveys. J. Photochem. Photobiol. 2021, 7, 100032. [Google Scholar] [CrossRef]
- Rodrigues, C.A.B.; Mariz, I.F.A.; Maçôas, E.M.S.; Afonso, C.A.M.; Martinho, J.M.G. Two-photon absorption properties of push–pull oxazolones derivatives. Dyes Pigment. 2012, 95, 713–722. [Google Scholar] [CrossRef]
- Józefowicz, M.; Heldt, J.R.; Bajorek, A.; Pączkowski, J. Spectroscopic properties of ethyl 5-(4-dimethylaminophenyl)-3-amino-2,4-dicyanobenzoate. Chem. Phys. 2009, 363, 88–99. [Google Scholar] [CrossRef]
- Oliden-Sánchez, A.; Alvarado-Martínez, E.; Ramírez-Ornelas, D.E.; Vázquez, M.A.; Avellanal-Zaballa, E.; Bañuelos, J.; Peña-Cabrera, E. Extended BODIPYs as Red–NIR Laser Radiation Sources with Emission from 610 nm to 750 nm. Molecules 2023, 28, 4750. [Google Scholar] [CrossRef] [PubMed]
- Rybczyński, P.; Bousquet, M.H.E.; Kaczmarek-Kędziera, A.; Jędrzejewska, B.; Jacquemin, D.; Ośmiałowski, B. Controlling the fluorescence quantum yields of benzothiazole-difluoroborates by optimal substitution. Chem. Sci. 2022, 13, 13347–13360. [Google Scholar] [CrossRef]
- Kage, Y.; Kang, S.; Mori, S.; Mamada, M.; Adachi, C.; Kim, D.; Furuta, H.; Shimizu, S. An Electron-Accepting aza-BODIPY-Based Donor–Acceptor–Donor Architecture for Bright NIR Emission. Chem. Eur. J. 2021, 27, 5259–5267. [Google Scholar] [CrossRef]
- Shi, Z.; Han, X.; Hu, W.; Bai, H.; Peng, B.; Ji, L.; Fan, Q.; Li, L.; Huang, W. Bioapplications of small molecule Aza-BODIPY: From rational structural design to in vivo investigations. Chem. Soc. Rev. 2020, 49, 7533–7567. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K. Recent advances in the application of BODIPY in bioimaging and chemosensing. J. Mater. Chem. C 2019, 7, 11361–11405. [Google Scholar] [CrossRef]
- Donaire-Arias, A.; Poulsen, M.L.; Ramón-Costa, J.; Montagut, A.M.; Estrada-Tejedor, R.; Borrell, J.I. Synthesis of Chalcones: An Improved High-Yield and Substituent-Independent Protocol for an Old Structure. Molecules 2023, 28, 7576. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, M.; Józefowicz, M.; Bajorek, A.; Heldt, J.R. Experimental and Theoretical Studies of the Spectroscopic Properties of Chalcone Derivatives. J. Fluoresc. 2017, 27, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Khadieva, A.; Rayanov, M.; Shibaeva, K.; Piskunov, A.; Padnya, P.; Stoikov, I. Towards Asymmetrical Methylene Blue Analogues: Synthesis and Reactivity of 3-N′-Arylaminophenothiazines. Molecules 2022, 27, 3024. [Google Scholar] [CrossRef]
- Tiravia, M.; Sabuzi, F.; Valentini, F.; Conte, V.; Galloni, P. 3-Morpholino-7-[N-methyl-N-(4′-carboxyphenyl)amino]phenothiazinium Chloride. Molbank 2022, 2022, M1493. [Google Scholar] [CrossRef]
- Teng, C.; Yang, X.; Yang, C.; Li, S.; Cheng, M.; Hagfeldt, A.; Sun, L. Molecular Design of Anthracene-Bridged Metal-Free Organic Dyes for Efficient Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 9101–9110. [Google Scholar] [CrossRef]
- Nagy, M.; Fiser, B.; Szőri, M.; Vanyorek, L.; Viskolcz, B. Optical Study of Solvatochromic Isocyanoaminoanthracene Dyes and 1,5-Diaminoanthracene. Int. J. Mol. Sci. 2022, 23, 1315. [Google Scholar] [CrossRef] [PubMed]
- Demirçalı, A.; Karcı, F.; Sari, F. Synthesis and absorption properties of five new heterocyclic disazo dyes containing pyrazole and pyrazolone and their acute toxicities on the freshwater amphipod Gammarus roeseli. Color. Technol. 2021, 137, 280–291. [Google Scholar] [CrossRef]
- Szukalski, A.; Stottko, R.; Krawczyk, P.; Sahraoui, B.; Jędrzejewska, B. Application of the pyrazolone derivatives as effective modulators in the opto-electronic networks. J. Photochem. Photobiol. A Chem. 2023, 437, 114482. [Google Scholar] [CrossRef]
- Luo, Y.; Qiu, K.-M.; Lu, X.; Liu, K.; Fu, J.-Y.; Zhu, H.-L. Synthesis, biological evaluation, and molecular modeling of cinnamic acyl sulfonamide derivatives as novel antitubulin agents. Biorg. Med. Chem. 2011, 19, 4730–4738. [Google Scholar] [CrossRef]
- Abdel-Atty, M.M.; Farag, N.A.; Kassab, S.E.; Serya, R.A.T.; Abouzid, K.A.M. Design, synthesis, 3D pharmacophore, QSAR, and docking studies of carboxylic acid derivatives as Histone Deacetylase inhibitors and cytotoxic agents. Bioorg. Chem. 2014, 57, 65–82. [Google Scholar] [CrossRef] [PubMed]
- El-Batta, A.; Jiang, C.; Zhao, W.; Anness, R.; Cooksy, A.L.; Bergdahl, M. Wittig Reactions in Water Media Employing Stabilized Ylides with Aldehydes. Synthesis of α,β-Unsaturated Esters from Mixing Aldehydes, α-Bromoesters, and Ph3P in Aqueous NaHCO3. J. Org. Chem. 2007, 72, 5244–5259. [Google Scholar] [CrossRef] [PubMed]
- Baud, M.G.J.; Leiser, T.; Meyer-Almes, F.-J.; Fuchter, M.J. New synthetic strategies towards psammaplin A, access to natural product analogues for biological evaluation. Org. Biomol. Chem. 2011, 9, 659–662. [Google Scholar] [CrossRef]
- Handy, S.T. One-Pot Halogenation-Heck Coupling Reactions in Ionic Liquids. Synlett 2006, 2006, 3176–3178. [Google Scholar] [CrossRef]
- Gawinecki, R.; Andrzejak, S.; Puchala, A. Efficiency of the Vilsmeier-Haack method in the synthesis of p-aminobenzaldehydes. Org. Prep. Proced. Int. 1998, 30, 455–460. [Google Scholar] [CrossRef]
- van den Berg, O.; Sengers, W.G.F.; Jager, W.F.; Picken, S.J.; Wübbenhorst, M. Dielectric and Fluorescent Probes To Investigate Glass Transition, Melt, and Crystallization in Polyolefins. Macromolecules 2004, 37, 2460–2470. [Google Scholar] [CrossRef]
- Pietrzak, M.; Jędrzejewska, B.; Mądrzejewska, D.; Bajorek, A. Convenient Synthesis of p-Aminobenzoic Acids and their Methyl Esters. Org. Prep. Proced. Int. 2017, 49, 45–52. [Google Scholar] [CrossRef]
- Pietrzak, M.; Jędrzejewska, B. Aromatic Amines in Organic Synthesis. Part II. p-Aminocinnamaldehydes. Molecules 2021, 26, 4360. [Google Scholar] [CrossRef]
- Pereira, A.R.; Freitas, V.D.; Mateus, N.; Oliveira, J. Functionalization of 7-Hydroxy-pyranoflavylium: Synthesis of New Dyes with Extended Chromatic Stability. Molecules 2022, 27, 7351. [Google Scholar] [CrossRef]
- Divac, V.M.; Šakić, D.; Weitner, T.; Gabričević, M. Solvent effects on the absorption and fluorescence spectra of Zaleplon: Determination of ground and excited state dipole moments. Spectrochim. Acta Part A 2019, 212, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Tamulis, A.; Tamuliene, J.; Balevicius, M.L.; Rinkevicius, Z.; Tamulis, V. Quantum Mechanical Studies of Intensity in Electronic Spectra of Fluorescein Dianion and Monoanion Forms. Struct. Chem. 2003, 14, 643–648. [Google Scholar] [CrossRef]
- Batistela, V.R.; da Costa Cedran, J.; Moisés de Oliveira, H.P.; Scarminio, I.S.; Ueno, L.T.; Eduardo da Hora Machado, A.; Hioka, N. Protolytic fluorescein species evaluated using chemometry and DFT studies. Dyes Pigment. 2010, 86, 15–24. [Google Scholar] [CrossRef]
- Pilla, V.; Gonçalves, A.C.; Dos Santos, A.A.; Lodeiro, C. Lifetime and Fluorescence Quantum Yield of Two Fluorescein-Amino Acid-Based Compounds in Different Organic Solvents and Gold Colloidal Suspensions. Chemosensors 2018, 6, 26. [Google Scholar] [CrossRef]
- Koo, J.Y.; Heo, C.H.; Shin, Y.-H.; Kim, D.; Lim, C.S.; Cho, B.R.; Kim, H.M.; Park, S.B. Readily Accessible and Predictable Naphthalene-Based Two-Photon Fluorophore with Full Visible-Color Coverage. Chem. Eur. J. 2016, 22, 14166–14170. [Google Scholar] [CrossRef] [PubMed]
- Kazama, A.; Imai, Y.; Okayasu, Y.; Yamada, Y.; Yuasa, J.; Aoki, S. Design and Synthesis of Cyclometalated Iridium(III) Complexes—Chromophore Hybrids that Exhibit Long-Emission Lifetimes Based on a Reversible Electronic Energy Transfer Mechanism. Inorg. Chem. 2020, 59, 6905–6922. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Tanabe, H.; Tobita, S.; Shizuka, H. Solvent-Dependent Radiationless Transitions of Excited 1-Aminonaphthalene Derivatives. J. Phys. Chem. A 1997, 101, 4496–4503. [Google Scholar] [CrossRef]
- Lewis, F.D.; Hougland, J.L.; Markarian, S.A. Formation and Anomalous Behavior of Aminonaphthalene−Cinnamonitrile Exciplexes. J. Phys. Chem. A 2000, 104, 3261–3268. [Google Scholar] [CrossRef]
- Bajorek, A.; Trzebiatowska, K.; Jędrzejewska, B.; Pietrzak, M.; Gawinecki, R.; Pączkowski, J. Developing of Fluorescence Probes Based on Stilbazolium Salts for Monitoring Free Radical Polymerization Processes. II. J. Fluoresc. 2004, 14, 295–307. [Google Scholar] [CrossRef]
- Beach, S.F.; Hepworth, J.D.; Sawyer, J.; Hallas, G.; Marsden, R.; Mitchell, M.M.; Ibbitson, D.A.; Jones, A.M.; Neal, G.T. Dipole moments of some N-phenyl-substituted derivatives of pyrrolidine, piperidine, morpholine, and thiomorpholine. J. Chem. Soc. Perkin Trans. 2 1984, 2, 217–221. [Google Scholar] [CrossRef]
- Gawinecki, R.; Kolehmainen, E.; Kauppinen, R. 1H and 13C NMR studies of para-substituted benzaldoximes for evaluation of the electron donor properties of substituted amino groups. J. Chem. Soc. Perkin Trans. 2 1998, 1, 25–30. [Google Scholar] [CrossRef]
- Pelmus, M.; Ungureanu, E.-M.; Stanescu, M.D.; Tarko, L. Electrochemical and QSPR studies of several hydroxy- and amino-polysubstituted benzenes constituents of useful compounds. J. Appl. Electrochem. 2020, 50, 851–862. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Taft, R.W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar] [CrossRef]
- Olmsted, J. Calorimetric determinations of absolute fluorescence quantum yields. J. Phys. Chem. 1979, 83, 2581–2584. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 03, Revision B.05; Gaussian, Inc.: Pittsburgh, PA, USA, 2003. [Google Scholar]
Abbr. | 1,4-Dioxane | Ethyl Acetate | Methanol | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λmax abs | λmax fl | ϕfl | Δν | λmax abs | εmax | λmax fl | ϕfl | Δν | λmax abs | εmax | λmax fl | ϕfl | Δν | |
2a | 353 | 414 | 0.84 | 4174 | 355 | 28.9 | 426 | 0.61 | 4695 | 356 | 26.9 | 461 | 0.69 | 6398 |
2b | 363 | 418 | 0.96 | 3626 | 360 | 34.3 | 426 | 0.62 | 4304 | 366 | 31.2 | 462 | 1.29 | 5677 |
2c | 366 | 418 | 1.15 | 3399 | 364 | 36.5 | 427 | 0.93 | 4053 | 367 | 29.7 | 465 | 1.75 | 5743 |
2d | 359 | 438 | 0.52 | 5024 | 358 | 41.8 | 433 | 0.45 | 4838 | 365 | 33.9 | 463 | 0.67 | 5799 |
2e | 352 | 413 | 0.16 | 4196 | 352 | 23.7 | 432 | 0.30 | 5261 | 357 | 22.3 | 437 | 0.17 | 5128 |
2f | 332 | 438 | 3.48 | 7289 | 329 | 20.5 | 439 | 0.31 | 7616 | 330 | 18.4 | 454 | 0.64 | 8277 |
2g | 338 | 443 | 1.58 | 7012 | 336 | 19.3 | 445 | 1.80 | 7290 | 336 | 16.5 | 459 | 0.84 | 7975 |
2h | 362 | 420 | 0.89 | 3815 | 361 | 33.2 | 429 | 0.66 | 4391 | 361 | 32.4 | 463 | 1.07 | 6103 |
2i | 351 | 420 | 1.47 | 4681 | 348 | 25.5 | 430 | 1.28 | 5480 | 352 | 24.9 | 467 | 1.62 | 6996 |
2j | 341 | 416 | 1.21 | 5287 | 341 | 22.8 | 425 | 1.06 | 5796 | 341 | 27.5 | 466 | 1.67 | 7866 |
2k | 360 | 444 | 1.69 | 5255 | 357 | 27.2 | 443 | 1.63 | 5438 | 365 | 22.5 | 467 | 1.22 | 5984 |
2l | 365 | 439 | 1.44 | 4618 | 365 | 31.4 | 434 | 1.29 | 4356 | 371 | 25.6 | 465 | 1.36 | 5449 |
2m | 375 | 445 | 2.14 | 4195 | 374 | 27.2 | 444 | 2.38 | 4215 | 382 | 31.3 | 469 | 2.04 | 4856 |
2n | 365 | 464 | 0.57 | 5845 | 362 | 20.4 | 478 | 0.39 | 6704 | 365 | 16.8 | 508 | 0.67 | 7712 |
2o | 366 | 450 | 59.9 | 5100 | 370 | 17.2 | 471 | 73.8 | 5796 | 366 | 18.5 | 489 | 61.2 | 6873 |
3a | 357 | 417 | 0.81 | 4030 | 356 | 31.2 | 426 | 0.74 | 4616 | 364 | 29.9 | 467 | 1.27 | 6059 |
3h | 365 | 419 | 0.83 | 3531 | 364 | 31.4 | 429 | 0.81 | 4163 | 371 | 34.2 | 470 | 1.51 | 5678 |
3i | 354 | 424 | 1.56 | 4664 | 352 | 19.5 | 432 | 1.18 | 5261 | 358 | 32.2 | 473 | 2.06 | 6791 |
3l | 367 | 439 | 1.31 | 4469 | 367 | 32.2 | 434 | 1.29 | 4206 | 375 | 27.2 | 477 | 1.78 | 5702 |
3n | 366 | 465 | 0.61 | 5817 | 365 | 24.1 | 478 | 0.48 | 6477 | 366 | 15.6 | 511 | 1.00 | 7753 |
No. | Solvent | λmax abs | λmax fl | Δν | ϕfl | χ2 | kr | knr | kr/knr | fos | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
εmax | α1 | α2 | |||||||||||
2a | 1,4-Dx | 353 | 414 | 4174 | 0.84 | 0.074 | 0.521 | 0.08 | 2.194 | 1.07 | 12.6 | 0.0085 | 0.619 |
27.4 | 98.95 | 1.05 | |||||||||||
EtOAc | 355 | 426 | 4695 | 0.61 | 0.08 | 0.896 | 0.09 | 2.419 | 0.673 | 11.0 | 0.0061 | 0.625 | |
28.9 | 98.7 | 1.3 | |||||||||||
DMF | 357 | 448 | 5690 | 2.06 | 0.127 | 2.455 | 0.14 | 1.700 | 1.48 | 7.04 | 0.021 | 0.646 | |
27.4 | 99.48 | 0.52 | |||||||||||
2o | 1,4-Dx | 366 | 450 | 5100 | 59.9 | 1.684 | 2.506 | 1.95 | 1.096 | 3.06 | 0.205 | 1.49 | 0.466 |
20.9 | 67.07 | 32.93 | |||||||||||
EtOAc | 370 | 471 | 5796 | 73.8 | 1.777 | 2.454 | 2.09 | 1.002 | 3.52 | 0.125 | 2.82 | 0.401 | |
17.2 | 53.05 | 46.95 | |||||||||||
DMF | 373 | 499 | 6842 | 70.8 | 1.836 | 2.673 | 2.53 | 1.110 | 2.80 | 0.115 | 2.42 | 0.539 | |
22.4 | 16.93 | 83.07 |
Abbr. | Eox (mV) | Abbr. | Eox (mV) | Abbr. | Eox (mV) | Abbr. | Eox (mV) |
---|---|---|---|---|---|---|---|
2a | 1132 | 2f | 1285 | 2k | 1072 | 3a | 1183 |
2b | 1213 | 2g | 1264 | 2l | 1150 | 3h | 1306 |
2c | 1261 | 2h | 993 | 2m | 1171 | 3i | 1210 |
2d | 1192 | 2i | 1084 | 2n | 1147 | 3l | 1240 |
2e | 1177 | 2j | 963 | 2o | 1066 | 3n | 1171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak, M.; Jędrzejewska, B. Aromatic Amines in Organic Synthesis Part III; p-Aminocinnamic Acids and Their Methyl Esters. Appl. Sci. 2024, 14, 6032. https://doi.org/10.3390/app14146032
Pietrzak M, Jędrzejewska B. Aromatic Amines in Organic Synthesis Part III; p-Aminocinnamic Acids and Their Methyl Esters. Applied Sciences. 2024; 14(14):6032. https://doi.org/10.3390/app14146032
Chicago/Turabian StylePietrzak, Marek, and Beata Jędrzejewska. 2024. "Aromatic Amines in Organic Synthesis Part III; p-Aminocinnamic Acids and Their Methyl Esters" Applied Sciences 14, no. 14: 6032. https://doi.org/10.3390/app14146032
APA StylePietrzak, M., & Jędrzejewska, B. (2024). Aromatic Amines in Organic Synthesis Part III; p-Aminocinnamic Acids and Their Methyl Esters. Applied Sciences, 14(14), 6032. https://doi.org/10.3390/app14146032