Influence of Apparatus Scale on Geogrid Monotonic and Cyclic/Post-Cyclic Pullout Behavior in Cohesive Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Pullout Test Devices
2.3. Test Procedures
3. Results
3.1. Monotonic Loading Conditions
3.2. Cyclic/Post-Cyclic Loading Conditions
4. Discussion
5. Conclusions
- In general, in the small-scale tests, no significant deformation occurred over the back half of the reinforcement, as opposed to the large-scale tests, where the geogrid displacements decreased progressively with the distance to the front end, showing a progressive mobilization of the interaction mechanisms at the interface.
- Particularly under lower applied normal stresses, the geogrid pullout resistance was considerably influenced by the apparatus scale and higher values were reached in the large-scale tests. However, the scale effect became less prominent when the applied normal pressure increased. Under post-cyclic loading conditions, the effect of apparatus scale on the pullout resistance values followed the same trend as that observed under monotonic loading.
- Despite the variability for the pullout resistance, the maximum shear stresses obtained from both types of equipment showed reasonable agreement.
- Under normal stresses of 25 and 50 kPa, the geogrid’s confined stiffness at low strains (<2%) derived from the small-scale tests exceeded that from the large-scale equipment. However, under a higher normal stress (100 kPa), the values of confined tensile stiffness obtained from both equipment types were consistent.
- The pullout interface’s apparent coefficient of friction (μs/GSY) decreased with increasing normal stress. While for σn = 25 kPa, the μs/GSY values obtained from the small-scale tests exceeded those from the large pullout box, under higher normal stresses, the differences between the μs/GSY values associated with different test devices were not significant.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Göbel, C.H.; Weisemann, U.C.; Kirschner, R.A. Effectiveness of a Reinforcing Geogrid in a Railway Subbase under Dynamic Loads. Geotext. Geomembr. 1994, 13, 91–99. [Google Scholar] [CrossRef]
- Berg, R.; Christopher, B.; Samtani, N. Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes—Volume I; Fhwa: Washington, DC, USA, 2009. [Google Scholar]
- Byun, Y.H.; Tutumluer, E. Local Stiffness Characteristic of Geogrid-Stabilized Aggregate in Relation to Accumulated Permanent Deformation Behavior. Geotext. Geomembr. 2019, 47, 402–407. [Google Scholar] [CrossRef]
- Touze, N. Healing the World: A Geosynthetics Solution. Geosynth. Int. 2021, 28, 1–31. [Google Scholar] [CrossRef]
- Vieira, C.S.; Lopes, M.L.; Caldeira, L.M. Sand-Geotextile Interface Characterisation through Monotonic and Cyclic Direct Shear Tests. Geosynth. Int. 2013, 20, 26–38. [Google Scholar] [CrossRef]
- Palmeira, E.M. Soil-Geosynthetic Interaction: Modelling and Analysis. Geotext. Geomembr. 2009, 27, 368–390. [Google Scholar] [CrossRef]
- Fox, P.J.; Kim, R.H. Effect of Progressive Failure on Measured Shear Strength of Geomembrane/GCL Interface. J. Geotech. Geoenviron. Eng. 2008, 134, 459–469. [Google Scholar] [CrossRef]
- Hsieh, C.W.; Chen, G.H.; Wu, J.H. The Shear Behavior Obtained from the Direct Shear and Pullout Tests for Different Poor Graded Soil-Geosynthetic Systems. J. GeoEngin. 2011, 6, 15–26. [Google Scholar] [CrossRef]
- Palmeira, E.M.; Milligan, G.W.E. Scale and Other Factors Affecting the Results of Pull out Tests of Grids Buried in Sand. Geotechnique 1989, 39, 511–524. [Google Scholar] [CrossRef]
- Farrag, K.; Acar, Y.B.; Juran, I. Pull-Out Resistance of Geogrid Reinforcements. Geotext. Geomembr. 1993, 12, 133–159. [Google Scholar] [CrossRef]
- Lopes, M.L.; Ladeira, M. Influence of the Confinement, Soil Density and Displacement Rate on Soil-Geogrid Interaction. Geotext. Geomembr. 1996, 14, 543–554. [Google Scholar] [CrossRef]
- Ochiaif, H.; Otani, J.; Hayashic, S.; Hirai, T. The Pull-Out Resistance of Geogrids in Reinforced Soil. Geotext. Geomembr. 1996, 14, 19–42. [Google Scholar] [CrossRef]
- Sugimoto, M.; Alagiyawanna, A.M.N.; Kadoguchi, K. Influence of Rigid and Flexible Face on Geogrid Pullout Tests. Geotext. Geomembr. 2001, 19, 257–277. [Google Scholar] [CrossRef]
- Moraci, N.; Recalcati, P. Factors Affecting the Pullout Behaviour of Extruded Geogrids Embedded in a Compacted Granular Soil. Geotext. Geomembr. 2006, 24, 220–242. [Google Scholar] [CrossRef]
- Teixeira, S.H.C.; Bueno, B.S.; Zornberg, J.G.; Asce, M. Pullout Resistance of Individual Longitudinal and Transverse Geogrid Ribs. J. Geotech. Geoenviron. Eng. 2007, 133, 37–50. [Google Scholar] [CrossRef]
- Cardile, G.; Moraci, N.; Calvarano, L.S. Geogrid Pullout Behaviour According to the Experimental Evaluation of the Active Length. Geosynth. Int. 2016, 23, 194–205. [Google Scholar] [CrossRef]
- Mirzaalimohammadi, A.; Ghazavi, M.; Roustaei, M.; Lajevardi, S.H. Pullout Response of Strengthened Geosynthetic Interacting with Fine Sand. Geotext. Geomembr. 2019, 47, 530–541. [Google Scholar] [CrossRef]
- Ferreira, F.B.; Vieira, C.S.; Lopes, M.D.L. Pullout Behavior of Different Geosynthetics—Influence of Soil Density and Moisture Content. Front. Built Environ. 2020, 6, 12. [Google Scholar] [CrossRef]
- Vieira, C.S.; Ferreira, F.B.; Pereira, P.M.; Lopes, M.D.L. Pullout Behaviour of Geosynthetics in a Recycled Construction and Demolition Material—Effects of Cyclic Loading. Transp. Geotech. 2020, 23, 100346. [Google Scholar] [CrossRef]
- Perkins, S.W.; Cuelho, E.V. Soil-Geosynthetic Interface Strength and Stiffness Relationships from Pullout Tests. Geosynth. Int. 1999, 6, 321–346. [Google Scholar] [CrossRef]
- Palmeira, E.M. Bearing Force Mobilisation in Pull-out Tests on Geogrids. Geotext. Geomembr. 2004, 22, 481–509. [Google Scholar] [CrossRef]
- Chen, C.; McDowell, G.R.; Thom, N.H. Investigating Geogrid-Reinforced Ballast: Experimental Pull-out Tests and Discrete Element Modelling. Soils Found. 2014, 54, 1–11. [Google Scholar] [CrossRef]
- Abdi, M.R.; Zandieh, A.R. Experimental and Numerical Analysis of Large Scale Pull out Tests Conducted on Clays Reinforced with Geogrids Encapsulated with Coarse Material. Geotext. Geomembr. 2014, 42, 494–504. [Google Scholar] [CrossRef]
- Sukmak, K.; Sukmak, P.; Horpibulsuk, S.; Chinkulkijniwat, A.; Arulrajah, A.; Shen, S.L. Pullout Resistance of Bearing Reinforcement Embedded in Marginal Lateritic Soil at Molding Water Contents. Geotext. Geomembr. 2016, 44, 475–483. [Google Scholar] [CrossRef]
- Ferreira, F.B.; Vieira, C.S.; Lopes, M.L.; Carlos, D.M. Experimental Investigation on the Pullout Behaviour of Geosynthetics Embedded in a Granite Residual Soil. Eur. J. Environ. Civ. Eng. 2016, 20, 1147–1180. [Google Scholar] [CrossRef]
- Vieira, C.S.; Pereira, P.; Ferreira, F.; de Lurdes Lopes, M. Pullout Behaviour of Geogrids Embedded in a Recycled Construction and Demolition Material. Effects of Specimen Size and Displacement Rate. Sustainability 2020, 12, 3825. [Google Scholar] [CrossRef]
- Raju, D.M.; Fannin, R.J. Monotonic and Cyclic Pull-out Resistance of Geogrids. Geotechnique 1997, 47, 331–337. [Google Scholar] [CrossRef]
- Moraci, N.; Cardile, G. Influence of Cyclic Tensile Loading on Pullout Resistance of Geogrids Embedded in a Compacted Granular Soil. Geotext. Geomembr. 2009, 27, 475–487. [Google Scholar] [CrossRef]
- Cardile, G.; Pisano, M.; Moraci, N. The Influence of a Cyclic Loading History on Soil-Geogrid Interaction under Pullout Condition. Geotext. Geomembr. 2019, 47, 552–565. [Google Scholar] [CrossRef]
- Nayeri, A.; Fakharian, K. Study on Pullout Behavior of Uniaxial HDPE Geogrids Under Monotonic and Cyclic Loads. Int. J. Civ. Eng. 2009, 7, 211–223. [Google Scholar]
- Moraci, N.; Cardile, G. Deformative Behaviour of Different Geogrids Embedded in a Granular Soil under Monotonic and Cyclic Pullout Loads. Geotext. Geomembr. 2012, 32, 104–110. [Google Scholar] [CrossRef]
- Ferreira, F.; Vieira, C.; De Lurdes Lopes, M. Cyclic and Post-Cyclic Shear Behaviour of a Granite Residual Soil—Geogrid Interface. Procedia Eng. 2016, 143, 379–386. [Google Scholar] [CrossRef]
- Koshy, N.; Unnikrishnan, N. Geosynthetics Under Cyclic Pullout and Post-Cyclic Monotonic Loading. Int. J. Geosynth. Ground Eng. 2016, 2, 13. [Google Scholar] [CrossRef]
- Garcia, G.F.N.; Lodi, P.C. Post-Cycling Interface Strength Test of Geogrids. Int. J. Civ. Eng. 2020, 18, 827–834. [Google Scholar] [CrossRef]
- Ferreira, F.B.; Vieira, C.S.; Lopes, M.L.; Ferreira, P.G. HDPE Geogrid-Residual Soil Interaction under Monotonic and Cyclic Pullout Loading. Geosynth. Int. 2020, 27, 79–96. [Google Scholar] [CrossRef]
- Jewell, R.A. Reinforcement Bond Capacity. Geotechnique 1990, 40, 513–518. [Google Scholar] [CrossRef]
- Portelinha, F.H.M.; Pereira, V.R.G.; Correia, N.S. Small-Scale Pullout Test of a Geogrid-Reinforced Unsaturated Soil with Suction Monitoring. Geotech. Test. J. 2018, 41, 787–804. [Google Scholar] [CrossRef]
- Marques, G.S.; Lins da Silva, J. Interaction Between a Lateritic Soil and a Non-Woven Geotextile in Different Moisture Conditions. Front. Built Environ. 2020, 6, 116. [Google Scholar] [CrossRef]
- Kakuda, F.M. Geogrid Pullout Tests Using Reduced Scale Equipment. Master’s Thesis, University of São Paulo, São Carlos, SP, Brazil, 2006. (In Portuguese). [Google Scholar]
- ASTM D6706-01; Standard Test Method for Measuring Geosynthetic Pullout Resistance in Soil. ASTM International: West Conshehawken, PA, USA, 2021.
- ASTM D4767-11; Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils. ASTM International: West Conshehawken, PA, USA, 2020.
- ASTM D7181-20; Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils. ASTM International: West Conshehawken, PA, USA, 2020.
- Abdi, M.R.; Sadrnejad, A.; Arjomand, M.A. Strength Enhancement of Clay by Encapsulating Geogrids in Thin Layers of Sand. Geotext. Geomembr. 2009, 27, 447–455. [Google Scholar] [CrossRef]
- Abdi, M.R.; Arjomand, M.A. Pullout Tests Conducted on Clay Reinforced with Geogrid Encapsulated in Thin Layers of Sand. Geotext. Geomembr. 2011, 29, 588–595. [Google Scholar] [CrossRef]
- Teixeira, H.S.C. Construction and Calibration of a Large Pullout Test Device. Master’s Thesis, University of São Paulo, São Carlos, SP, Brazil, 1999. (In Portuguese). [Google Scholar]
- ASTM D7499/D7499M-09; Standard Test Method for Measuring Geosynthetic-Soil Resilient Interface Shear Stiffness. ASTM International: West Conshehawken, PA, USA, 2014.
- Razzazan, S.; Keshavarz, A.; Mosallanezhad, M. Pullout Behavior of Polymeric Strip in Compacted Dry Granular Soil under Cyclic Tensile Load Conditions. J. Rock Mech. Geotech. Eng. 2018, 10, 968–976. [Google Scholar] [CrossRef]
- Wang, Z.; Jacobs, F.; Ziegler, M. Visualization of Load Transfer Behaviour between Geogrid and Sand Using PFC2D. Geotext. Geomembr. 2014, 42, 83–90. [Google Scholar] [CrossRef]
- Giroud, J.P.; Asce, M.; Han, J. Design Method for Geogrid-Reinforced Unpaved Roads. I. Development of Design Method. J. Geotech. Geoenv. Eng. 2004, 130, 775–786. [Google Scholar] [CrossRef]
Property | Unit | Soil A | Soil B |
---|---|---|---|
Classification (USCS) | - | MH | SC |
Specific gravity, GS | - | 2.913 | 2.646 |
Liquid limit, wL | % | 55 | 16 |
Plastic limit, wP | % | 32 | - |
Maximum dry unit weight, γd,máx | g/cm3 | 1.626 | 1.983 |
Optimum water content, wop | % | 22.75 | 9.24 |
Friction angle, ϕ | º | 27 | 31 |
Cohesion, c | kPa | 66.27 | 34.64 |
Property | Unit | Value |
---|---|---|
Polymer | - | PP |
Thickness | mm | 1.05 |
Mean grid size | mm | 45 × 45 |
Short-term tensile strength | kN/m | 43.24 |
Elongation at maximum load | % | 5.75 |
Secant stiffness at 5% strain | kN/m | 523 |
Test | PR (kN/m) | uPR (mm) | JC2% (kN/m) | τi (kPa) | μs/GSY | σn (kPa) | Equipment |
---|---|---|---|---|---|---|---|
1 | 15.68 | 27.16 | 725 | 36.47 | 1.46 | 25 | SB |
2 | 22.19 | 25.55 | 779 | 51.61 | 1.03 | 50 | SB |
3 | 27.57 | 15.82 | 838 | 64.12 | 0.64 | 100 | SB |
4 | 20.90 | 28.07 | 632 | 41.81 | 1.67 | 25 | LB |
5 | 26.70 | 20.05 | 686 | 53.40 | 1.06 | 50 | LB |
6 | 28.93 | 8.19 | 852 | 59.73 | 0.58 | 100 | LB |
Test | PR (kN/m) | τcyc/τmon (kPa) | μs/GSY | σn (kPa) | Equipment |
---|---|---|---|---|---|
1 | 15.98 | 1.12 | 1.48 | 25 | SB |
2 | 20.50 | 1.06 | 1.64 | 25 | LB |
3 | 22.39 | 0.95 | 0.60 | 100 | SB |
4 | 27.35 | 0.97 | 0.55 | 100 | LB |
Monotonic | σn = 25 kPa | σn = 50 kPa | σn = 100 kPa |
PR | 0.75 | 0.83 | 0.95 |
τi | 0.87 | 0.97 | 1.07 |
μs/GSY | 0.87 | 0.97 | 1.11 |
Cyclic/post-cyclic | σn = 25 kPa | σn = 100 kPa | |
PR | 0.78 | 0.94 | |
τi | 0.92 | 1.06 | |
μs/GSY | 0.91 | 1.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barajas, S.R.; Pedroso, G.O.M.; Ferreira, F.B.; Lins da Silva, J. Influence of Apparatus Scale on Geogrid Monotonic and Cyclic/Post-Cyclic Pullout Behavior in Cohesive Soils. Appl. Sci. 2024, 14, 5861. https://doi.org/10.3390/app14135861
Barajas SR, Pedroso GOM, Ferreira FB, Lins da Silva J. Influence of Apparatus Scale on Geogrid Monotonic and Cyclic/Post-Cyclic Pullout Behavior in Cohesive Soils. Applied Sciences. 2024; 14(13):5861. https://doi.org/10.3390/app14135861
Chicago/Turabian StyleBarajas, Sergio Rincón, Gabriel Orquizas Mattielo Pedroso, Fernanda Bessa Ferreira, and Jefferson Lins da Silva. 2024. "Influence of Apparatus Scale on Geogrid Monotonic and Cyclic/Post-Cyclic Pullout Behavior in Cohesive Soils" Applied Sciences 14, no. 13: 5861. https://doi.org/10.3390/app14135861
APA StyleBarajas, S. R., Pedroso, G. O. M., Ferreira, F. B., & Lins da Silva, J. (2024). Influence of Apparatus Scale on Geogrid Monotonic and Cyclic/Post-Cyclic Pullout Behavior in Cohesive Soils. Applied Sciences, 14(13), 5861. https://doi.org/10.3390/app14135861