PMT Fluorescence Signal Denoising Processing Based on Wavelet Transform and BP Neural Network
Abstract
:Featured Application
Abstract
1. Introduction
2. Detection System Section
2.1. Optical Path Section
2.2. Circuit Section
3. Wavelet Transform
4. Temperature Drift of PMT
4.1. Data Collection
4.2. Data Processing
5. Experimental Verification
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, L.; Tittel, F.K.; Li, C.; Sanchez, N.P.; Wu, H.; Zheng, C.; Yu, Y.; Sampaolo, A.; Griffin, R.J. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing. Opt. Express 2016, 24, A528–A535. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, L.; Chen, J.; Cao, Z.; Lin, Y.; Cai, W. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration. Opt. Express 2015, 23, 22494–22511. [Google Scholar] [CrossRef] [PubMed]
- Romanini, D.; Kachanov, A.; Sadeghi, N.; Stoeckel, F. CW cavity ring down spectroscopy. Chem. Phys. Lett. 1997, 264, 316–322. [Google Scholar] [CrossRef]
- Wheeler, M.D.; Newman, S.M.; Orr-Ewing, A.J.; Ashfold, M.N. Cavity ring-down spectroscopy. J. Chem. Soc. Faraday Trans. 1998, 94, 337–351. [Google Scholar] [CrossRef]
- Engeln, R.; Berden, G.; Peeters, R.; Meijer, G. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy. Rev. Sci. Instrum. 1998, 69, 3763–3769. [Google Scholar] [CrossRef]
- Gupta, M.; Jiao, H.; O’keefe, A. Cavity-enhanced spectroscopy in optical fibers. Opt. Lett. 2002, 27, 1878–1880. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, M.O.; Asai, K.; Davis, D.D. Photofragmentation-laser induced fluorescence: A new method for detecting atmospheric trace gases. Appl. Opt. 1980, 19, 3597–3605. [Google Scholar] [CrossRef] [PubMed]
- Waclawek, J.P.; Moser, H.; Lendl, B. Balanced-detection interferometric cavity-assisted photothermal spectroscopy employing an all-fiber-coupled probe laser configuration. Opt. Express 2021, 29, 7794–7808. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhao, Y.; Bao, H.; Ho, H.L.; Jin, W.; Fan, S.; Gao, S.; Wang, Y.; Wang, P. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber. Nat. Commun. 2020, 11, 847. [Google Scholar] [CrossRef]
- Pinto, D.; Moser, H.; Waclawek, J.P.; Russo, S.D.; Patimisco, P.; Spagnolo, V.; Lendl, B. Parts-per-billion detection of carbon monoxide: A comparison between uartz-enhanced photoacoustic and photothermal spectroscopy. Photoacoustics 2021, 22, 100244. [Google Scholar] [CrossRef]
- Okabe, H.; Paul, L.S.; Joseph, J.B. Ambient and Source SO2 Detector Based on a Fluorescence Method. J. Air Waste Mang. Assoc. 1973, 23, 514–516. [Google Scholar]
- Bradshaw, J.D.; Rodgers, M.O.; Davis, D.D. Single-photon laser-induced fluorescence detection of NO and SO2 for atomospheric conditions of composition and pressure: Errata. Appl. Opt. 1982, 21, 2493–2500. [Google Scholar] [CrossRef] [PubMed]
- Somesfalean, G.; Zhang, Z.G.; Sjöholm, M.; Svanberg, S. All-diode-laser ultraviolet absorption spectroscopy for sulfur dioxide detection. Appl. Phys. B 2005, 80, 1021–1025. [Google Scholar] [CrossRef]
- Matsumi, Y.; Shigemori, H.; Takahashi, K. Laser-induced fluorescence instrument for measuring atmospheric SO2. Atmos. Environ. 2005, 39, 3177–3185. [Google Scholar] [CrossRef]
- Dorosz, P.; Baszczyk, M.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M. Silicon photomultiplier’s gain stabilization by bias correction for compensation of the temperature fluctuations. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 718, 202–204. [Google Scholar] [CrossRef]
- Kuznetsov, E. Temperature-compensated silicon photomultiplier. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 912, 226–230. [Google Scholar] [CrossRef]
- Dong, X.; Li, G.; Jia, Y.; Li, B.; He, K. Non-iterative denoising algorithm for mechanical vibration signal using spectral graph wavelet transform and detrended fluctuation analysis. Mech. Syst. Signal Process. 2021, 149, 107202. [Google Scholar] [CrossRef]
- Dong, Y.; Fu, Z.; Peng, Y.; Zheng, Y.; Yan, H.; Li, X. Precision fertilization method of field crops based on the Wavelet-BP neural network in China. J. Clean. Prod. 2020, 246, 118735. [Google Scholar] [CrossRef]
- Ahmad, S.; Blin, S.; Callier, S.; Cizel, J.B.; Conforti, S.; de La Taille, C.; Dulucq, F.; Fleury, J.; Martin-Chassard, G.; Raux, L.; et al. OMEGA SiPM readout ASICs. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 986, 164628. [Google Scholar] [CrossRef]
- Paredes, B.L.; Araújo, H.M.; Froborg, F.; Marangou, N.; Olcina, I.; Sumner, T.J.; Taylor, R.; Tomás, A.; Vacheret, A. Response of photomultiplier tubes to xenon scintillation light. Astropart. Phys. 2018, 102, 56–66. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Zhou, X.; Qin, F.; Zhang, Z. Optical sulfur dioxide sensor based on broadband absorption spectroscopy in the wavelength range of 198–222 nm. Sens. Actuators B Chem. 2017, 241, 146–150. [Google Scholar] [CrossRef]
- Liu, D.; Ma, M.; Zhang, Y. Research of pulsed Xenon lamp power supply based on STM32. J. Phys. Conf. Ser. 2021, 1754, 012016. [Google Scholar] [CrossRef]
- Holík, M.; Ahmadov, F.; Ahmadov, G.; Akbarov, R.; Berikov, D.; Mora, Y.; Nuruyev, S.; Pridal, P.; Sadigov, A.; Sadygov, Z.; et al. Miniaturized read-out interface “Spectrig MAPD” dedicated for silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 978, 164440. [Google Scholar] [CrossRef]
- Serrano-Finetti, E.; Casas, O.; Pallàs Areny, R. Common mode electronic noise in differential circuits. Measurement 2019, 140, 207–214. [Google Scholar] [CrossRef]
- Lan, T.; Zeng, Z.; Han, L.; Zeng, J. Seismic Data Denoising Based on Wavelet Transform and the Residual Neural Network. Appl. Sci. 2023, 13, 655. [Google Scholar] [CrossRef]
- Golestani, A.; Kolbadi SM, S.; Heshmati, A.A. Localization and de-noising seismic signals on SASW measurement by wavelet transform. J. Appl. Geophys. 2013, 98, 124–133. [Google Scholar] [CrossRef]
- Kabir, M.A.; Shahnaz, C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed. Signal Process. Control 2012, 7, 481–489. [Google Scholar] [CrossRef]
- Xu, X.; Luo, M.; Tan, Z.; Pei, R. Echo signal extraction method of laser radar based on improved singular value decomposition and wavelet threshold denoising. Infrared Phys. Technol. 2018, 92, 327–335. [Google Scholar] [CrossRef]
- Patil, R. Noise Reduction using Wavelet Transform and Singular Vector Decomposition. Procedia Comput. Sci. 2015, 54, 849–853. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, X.; Dong, C.; Jiao, M. Study on Denoising Method of Photoionization Detector Based on Wavelet Packet Transform. Chemosensors 2023, 11, 146. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, S.; Dong, W.; Xu, F.; Liu, H. Adaptive denoising algorithm using peak statistics-based thresholding and novel adaptive complementary ensemble empirical mode decomposition. Inf. Sci. 2021, 563, 269–289. [Google Scholar] [CrossRef]
- Dorosz, P.; Baszczyk, M.; Kucewicz, W.; Mik, L. Real-time measurement system with automatic gain detection and autocalibration for silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 936, 574–576. [Google Scholar] [CrossRef]
- Ginzburg, D.; Kopeika, N.; Paran, J.; Cohen-Zada, I.; Ghelman, M.; Pushkarsky, V.; Marcus, E.; Manor, A.; Mazor, T.; Kadmon, Y.; et al. Optimizing the design of a silicon photomultiplier-based radiation detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 652, 474–478. [Google Scholar] [CrossRef]
- Peng, B.; Gao, C.; Zhou, Y.; Guo, Y. Temperature-compensated ppb-level sulfur dioxide detection system based on fourier transform ultraviolet differential optical absorption spectrum method. Sens. Actuators B Chem. 2020, 312, 127988. [Google Scholar] [CrossRef]
- Safari, S.; Shabani, F.; Simon, D. Multirate multisensor data fusion for linear systems using Kalman filters and a neural network. Aerosp. Sci. Technol. 2014, 39, 465–471. [Google Scholar] [CrossRef]
- Chong, S.; Rui, S.; Jie, L.; Xiaoming, Z.; Jun, T.; Yunbo, S.; Jun, L.; Huiliang, C. Temperature drift modeling of MEMS gyroscope based on genetic-Elman neural network. Mech. Syst. Signal Process. 2016, 72–73, 897–905. [Google Scholar] [CrossRef]
- Li, J.; Yao, X.; Wang, X.; Yu, Q.; Zhang, Y. Multiscale local features learning based on BP neural network for rolling bearing intelligent fault diagnosis. Measurement 2020, 153, 107419. [Google Scholar] [CrossRef]
- Ma, W.; Li, Q.; Li, J.; Ding, L.; Yu, Q. A method for weighing broiler chickens using improved amplitude-limiting filtering algorithm and BP neural networks. Inf. Process. Agric. 2021, 8, 299–309. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Q.; Li, G.; He, M.; Dong, J.; Yan, H.; Wang, Z.; Duan, Z. A novel multi-source data fusion method based on Bayesian inference for accurate estimation of chlorophyll-a concentration over eutrophic lakes. Environ. Model. Softw. 2021, 141, 105057. [Google Scholar] [CrossRef]
- HJ 1044-2019; Ambient Air—Automatic Determination of Sulfur Dioxide—Ultraviolet Fluorescence Method. Springer Nature: Cham, Switzerland, 2019.
Wavelet Algorithm | Decomposition Level | Evaluation Index | Hard Threshold | Soft Threshold | Improvement Threshold |
---|---|---|---|---|---|
db10 | 4 | SNR | 37.68 | 39.58 | 40.29 |
Mean standard deviation | 3451 | 3102 | 2993 | ||
sym8 | 5 | SNR | 36.65 | 42.68 | 44.26 |
Mean standard deviation | 2864 | 2685 | 2697 | ||
coif5 | 4 | SNR | 38.61 | 39.31 | 39.98 |
Mean standard deviation | 3504 | 3220 | 3302 | ||
bior5.5 | 5 | SNR | 39.41 | 40.24 | 41.11 |
Mean standard deviation | 2845 | 2811 | 2774 | ||
ribo6.8 | 5 | SNR | 34.43 | 36.68 | 37.40 |
Mean standard deviation | 3102 | 2992 | 2864 | ||
fk22 | 5 | SNR | 38.86 | 40.24 | 40.82 |
Mean standard deviation | 3305 | 3105 | 3102 |
Training Algorithm | Layers | MSE | R |
---|---|---|---|
Levenberg–Marquardt | 12 | 1.4808 × 106 | 0.9775 |
Bayesian regularization | 14 | 1.4032 × 106 | 0.9767 |
Quantify conjugate gradient | 4 | 1.1334 × 106 | 0.9821 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, Y.; Li, J.; Zhao, Y.; Guo, J.; Yang, L.; Zhao, H. PMT Fluorescence Signal Denoising Processing Based on Wavelet Transform and BP Neural Network. Appl. Sci. 2024, 14, 4866. https://doi.org/10.3390/app14114866
Liu J, Zhang Y, Li J, Zhao Y, Guo J, Yang L, Zhao H. PMT Fluorescence Signal Denoising Processing Based on Wavelet Transform and BP Neural Network. Applied Sciences. 2024; 14(11):4866. https://doi.org/10.3390/app14114866
Chicago/Turabian StyleLiu, Jiehui, Yunhan Zhang, Jianshen Li, Yadong Zhao, Jinxi Guo, Lijie Yang, and Haichao Zhao. 2024. "PMT Fluorescence Signal Denoising Processing Based on Wavelet Transform and BP Neural Network" Applied Sciences 14, no. 11: 4866. https://doi.org/10.3390/app14114866
APA StyleLiu, J., Zhang, Y., Li, J., Zhao, Y., Guo, J., Yang, L., & Zhao, H. (2024). PMT Fluorescence Signal Denoising Processing Based on Wavelet Transform and BP Neural Network. Applied Sciences, 14(11), 4866. https://doi.org/10.3390/app14114866